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Social distancing and sphere packings

Assume that people should keep one meter distance between

themselves...

1m
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Social distancing and sphere packings

How to deal with a large number of people?
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Social distancing and sphere packings

We want non overlapping spheres of radius 0.5m.
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Social distancing and sphere packings

This is the sphere packing problem!

3



Coding and sphere packings

Consider a noisy channel over Rn: suppose there exists ε such that

if x ∈ Rn is sent, with high probability, the received vector y is in

B(x , ε):

x
ε
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Coding and sphere packings

If there is only one codeword in the ball of radius ε centred in the

received vector y ,

yx1

x2

x3x4
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Coding and sphere packings

If there is only one codeword in the ball of radius ε centred in the

received vector y , the receiver can decode the message.

yx1

x2

x3x4

ε
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Coding and sphere packings

But if there is more than one word in this ball,

y
x1x2

x3x4
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Coding and sphere packings

But if there is more than one word in this ball, the receiver is

confused and cannot decode!

y
x1x2

x3x4
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Coding and sphere packings

This is equivalent to the fact that the balls of radius ε centred in the

codewords do not intersect.

y

x1x2

x3x4
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Sphere packings

• Finding a good code with respect to this property boils down to

finding an arrangement of disjoint spheres having the same radius for

which the proportion of space filled is the highest possible.

• This is again the sphere packing problem!

• This problem is old, and known to be hard.

• What if we impose some algebraic structure to the packings, like for

linear codes?

• Euclidean lattices provide a way to approach this problem.
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The lattice sphere packing problem

The lattice sphere packing problem consists in finding the biggest

proportion of space ∆n that can be filled by a collection of disjoint

spheres having the same radius, with centers at the points of a

lattice Λ.

0
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The lattice sphere packing problem

For a given lattice Λ, the best sphere packing associated is given by

balls of radius µ/2, where µ = min{||λ||, λ ∈ Λ \ {0}}.

0 µ
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The lattice sphere packing problem

The density of this packing is

∆(Λ) =
Vol(B(µ))

2nVol(Λ)
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Dimensions 1 and 2

For n = 1, the problem is trivial: the best density is 1 !

For n = 2, the best packing density is π
√

3
6 ≈ 0.9069, and is given by the

hexagonal lattice (Lagrange, 1773, best lattice, Thue, 1892 and Fejes

Tóth, 1940, best packing).
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Dimension 3

For n = 3, it is the faced-centered cubic lattice which provides the best

density π
√

2
6 ≈ 0.74048 (Kepler conjecture, 1611, Gauss, 1832, best

lattice, and Hales, 1998, 2014, best packing).
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Solutions for the lattice sphere packing problem

Then we only know the best lattice packings for dimensions n ≤ 8 and

n = 24.

Dimension Lattice Proved by

4 D4 Korkine and Zolotareff, 1877

5 D5 Korkine and Zolotareff, 1877

6 E6 Blichfield, 1935

7 E7 Blichfield, 1935

8 E8 Blichfield, 1935

24 Λ24 Cohn and Kumar, 2009

In dimensions 8 and 24, E8 and the Leech lattice provide respectively the

unique optimal configurations (Viazovska, 2016).

What about high dimensions?
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An easy bound for general packings in high dimension

Suppose we have a saturated packing of balls of radius r

10



An easy bound for general packings in high dimension

Then, if we double the radius, we cannot have any free point.
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An easy bound for general packings in high dimension

So the balls of radius 2r cover the space.
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An easy bound for general packings in high dimension

Thus 2n∆ ≥ 1, in other words ∆ ≥ 1
2n .
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Lattice packings in higher dimensions

Upper bound: ∆n ≤ 2(−0.5999+o(1))n (Kabatiansky-Levenshtein 1978)

Lower bounds:

• Minkowski-Hlawka theorem (stated by Minkowski in 1911, proved by

Hlawka in 1943),

∆n ≥
2

2n
.

• Improvement by a linear factor: ∆n ≥ 0.73n
2n (Rogers,1947).

• Improvements on the constant: ∆n ≥ 2n
2n (Ball,1992), ∆n ≥ 2.2n

2n for n

divisible by 4 (Vance,2011).

• Venkatesh (2013): for all n big enough ∆n ≥ 65963n
2n , and for infinitely

many dimensions, ∆n ≥ 0.89n log log n
2n .

However, these results only provide the existence of good lattices, but are

not effective.
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Some effective results?

One way to do so is to exhibit finite families of lattices containing a dense

lattice.

The best one can do is to find exponential-sized families:

• Rush (1989) gave an ”effective” proof of Minkowski-Hlawka theorem,

with a family having a size of order exp(kn log n).

• Gaborit and Zémor (2006) gave a construction that provides lattices

with density higher than 0.06n
2n , with a complexity of enumeration of

order exp(11n log n).

Theorem (M., 2017)

For infinitely many dimension n, one can find a lattice Λ ⊂ Rn satisfying

∆(Λ) >
0.89n log log n

2n

with exp(1.5n log n(1 + o(1))) binary operations.
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A proof of Minkowski-Hlawka theorem

• Basic idea: Let Λ be a lattice in Rn and r > 0.

If |B(r) ∩ Λ \ {0}| < 1, then µ(Λ) ≥ r , thus

∆(Λ) ≥ Vol(B(r))

2n Vol(Λ)
.

• Since Λ is a lattice, if v is in B(r) ∩ Λ \ {0},

0 0

then so does −v !

• So the condition |B(r) ∩ Λ \ {0}| < 2 is sufficient to conclude

∆(Λ) ≥ Vol(B(r))
2n Vol(Λ) .
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A proof of Minkowski-Hlawka theorem

• Siegel’s mean value theorem: Let L be the set of lattices in Rn with

volume 1. For r > 0,

EL[|B(r) ∩ Λ \ {0}|] = Vol(B(r))

• So, when Vol(B(r)) < 2, there is a lattice Λ such that

∆(Λ) ≥ Vol(B(r))
2n . In other words:

∆n ≥
2

2n

14
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How can symmetries be useful?

• Idea: If we consider lattices with more symmetries, we can replace the

2-factor in the previous argument by a bigger value, and get a better

bound.

• Considering lattices having a module structure over the Hurwitz

integers, Vance refined Roger’s method and got an improvement in

the constant in its result.

• For n = 2` with ` prime, Gaborit and Zémor considered finite families

of lattices invariant under the action of Z/`Z via (doubly)-cyclic

permutation of coordinates.

• For n = 2φ(m), Venkatesh constructed infinite families of lattices

invariant under the action of mth-roots of unity. Taking

m =
∏

q∈P
q≤X

q, he optimized the ratio between m and 2φ(m).

15
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(Nordic) Number theory //////////Network Lattices

• Let K/Q be a number field of degree n.

• Following the real and complex embeddings of K → C, we can write

n = r1 + 2r2, and there is a natural embedding ι of K into KR , where

KR = Rr1 × Cr2 ' Rn ' K ⊗Q R:

ι : K → KR

x 7→ (σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x))
.

• The map

β : K × K → R
(x , y) 7→ tr(xȳ)

is a positive-definite symmetric bilinear form, which induces a scalar

product 〈·, ·〉 on KR.

• The ring of integers OK , and more generally every fractional ideal A

of K are free Z-modules of rank n, and thus define lattices in KR.
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Lattices from codes: Construction A

Let p be a prime number, π : Zn → Fn
p the canonical projection, and

C ⊂ Fn
p a k-dimensional code.

0 1 2 3

1

2

3

17



Lattices from codes: Construction A

We define ΛC = π−1(C ). Then we have pZn ⊂ ΛC ⊂ Zn and

Vol(ΛC ) = pn−k

0
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Lattices from codes: Construction A

We define ΛC = π−1(C ). Then we have pZn ⊂ ΛC ⊂ Zn and

Vol(ΛC ) = pn−k

0

Examples: The famous lattices E8 and the Leech Lattice Λ24 can be

obtained via this construction.
17



Outline of the proof

Theorem (M., 2017)

For infinitely many dimension n, one can find a lattice Λ ⊂ Rn satisfying

∆(Λ) >
0.89n log log n

2n

with exp(1.5n log n(1 + o(1))) binary operations.

• Let K = Q[ζm]↪→ KR = K ⊗Q R ' Rφ(m), Λ0 = O2
K ⊂ K 2

R.

• P ⊂ OK prime ideal, F = OK/P ' Fq.

• Adapt Construction A to π : Λ0 → Λ0

/
PΛ0 ' F 2.

• Take L the family of lattices obtained from all the q + 1 F -lines in F 2.

• If q is large enough, one gets an analogue of Siegel’s mean value

theorem.

18
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The kissing number problem

How many unit spheres can simultaneously touch a central unit sphere

without overlapping?
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The kissing number problem

How many unit spheres can simultaneously touch a central unit sphere

without overlapping?

Known for n ∈ {1, 2, 3, 4, 8, 24}.
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The kissing number problem

How many unit spheres can simultaneously touch a central unit sphere

without overlapping?

Known for n ∈ {1, 2, 3, 4, 8, 24}.
The lattice kissing number problem: what is the maximal number of

shortest vectors achieved by a lattice? 19



Exponential growth

Let τn be the kissing number in dimension n. It is known, from various

approaches (Chabauty 1953, Shannon 1959, Wyner 1965) that

log2 τn
n

≥ log2
2√
3
' 0.2075...

What about the lattice kissing number τ `n?

Recently (2019), Vlăduţ showed that there exist lattices with exponentially

large kissing numbers.

These lattices are constructed...

From codes! They come from algebraic geometric codes with

exponentially many minimal codewords.
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Formulation and generalizations

π
3

Kissing number:

max{|C |, C ⊂ Sn−1, x · y ≤ 1/2 for all x 6= y ∈ C}
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Formulation and generalizations

π
3

Spherical codes:

max{|C |, C ⊂ Sn−1, x · y ≤ cos θ for all x 6= y ∈ C}

21



Formulation and generalizations

π
3

Kissing number of the hemisphere:

max{|C |, C ⊂ Hn−1, x · y ≤ 1/2 for all x 6= y ∈ C}

21



Goal and results

We are interested in special rigid structures, like:

• The square antiprism, the unique optimal θ-spherical code in

dimension 3 with cos θ = (2
√

2− 1)/7 (Schütte-van der Waerden

1951, Danzer 1986).

• For the Hemisphere in dimension 8: the E8 lattice provides an optimal

configuration (Bachoc-Vallentin, 2008). What about uniqueness?
1

1

56

126

56

183

240

• [Dostert, De Laat, M., 2020]: A general framework to prove

optimality and uniqueness of such configurations.
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Techniques in low dimensions

• Lower bounds:

Algebraic constructions, very often structures with many symmetries.

• Upper bounds:

• 2-point bound (Delsarte-Goethals-Seidel 1977)

→ linear programming bound

• 3-point bound (Bachoc-Vallentin 2008)

→ semidefinite programming bound

These bounds are related to the hierarchies of semidefinite upper

bounds used to give upper bounds on the independence number of

finite graphs. (Lovász-Schrijver 1991, Lasserre 2001, Laurent 2007)
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Solving an SDP: Rage against the machine precision

• Assume we know a configuration C with |C | = N. Any upper bound

< N + 1 is enough to prove that C is optimal.

• However, sharp bounds provide additional information on optimal

configurations, leading to uniqueness proofs.

• There are many examples of exact sharp LP bounds...but very few

cases in which SDP bound is proven to be sharp while LP is not.

• For large problems, SDP solvers only provide approximate solutions in

floating point in polynomial time.

• Turning an approximate solution into a rigorous proof is hard!

24
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Results

Together with David de Laat and Maria Dostert, based on LLL, we give a

procedure turning an approximate solution to an exact solution over Q or

Q[
√
d ], when it exists. We can prove:

• The Petersen code is the unique optimal 1/6-code in dimension 4

(Bachoc-Vallentin 2009, Dostert-de Laat-M. 2020).

• Numerically sharp for the square antiprism (Bachoc-Vallentin 2009)

→ Rigorous proof (Dostert-de Laat-M. 2020)

• E8 gives an optimal configuration on the hemisphere in dimension 8

(Bachoc-Vallentin 2009)

→ Uniqueness (Dostert-de Laat-M. 2020)

Besides spherical codes, we could apply our method for packing spheres in

spheres.
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Thank you!
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Bonus: Coloring the Voronoi tessellation of a lattice

Recall the Voronoi tesselation of a lattice Λ.

0
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Bonus: Coloring the Voronoi tessellation of a lattice

We want to color this tessellation in such a way that two cells

sharing a facet do not receive the same color.

0
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Bonus: Coloring the Voronoi tessellation of a lattice

We are colouring a geometric graph GΛ.

• The vertices: V = Λ,

• The edges: {u, v} ∈ E if w = u − v is a Voronoi vector of Λ, that is

VΛ ∩ w + VΛ is an n − 1-dimensional facet of VΛ.
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Bonus: Coloring the Voronoi tessellation of a lattice

We are colouring a geometric graph GΛ.

What is the chromatic number χ(Λ) of GΛ? [Dutour-Sikirić, Madore, M., Vallentin]

• The vertices: V = Λ,

• The edges: {u, v} ∈ E if w = u − v is a Voronoi vector of Λ, that is

VΛ ∩ w + VΛ is an n − 1-dimensional facet of VΛ.
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Bonus: Coloring the Voronoi tessellation of a lattice

We are colouring a geometric graph GΛ.

What is the behavior of χ(Λ) with the dimension n ?

• χ(Λ) ≤ 2n,

• Expected value: χ(Λ) ≥ 20.099n.

What is the chromatic number of the most famous lattices?

• The vertices: V = Λ,

• The edges: {u, v} ∈ E if w = u − v is a Voronoi vector of Λ, that is

VΛ ∩ w + VΛ is an n − 1-dimensional facet of VΛ.
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