Duality and class field theory for curves over p-adic
fields
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Weil groups

The Weil group W, of the finite field &

There is an isomorphism of profinite groups

G < Z:= Wm Z/nZ

mapping 1 € Z to Frob € Gy. Define Wi, C Gy, by the diagram

Wi ——= Gy,

ig |=

7—>17

so that W} = Z is the discrete subgroup of GGj, generated by Frob.
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Weil groups

The Weil group Wi of the local field K

Definition
The Weil group of the local field K is defined as the fiber product
of topological groups :

WK = GK X Gy Wk

We have an exact sequence topological groups :

1—1 —Wg — W, —1
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K™ has a discrete valuation.
L the completion of K“".
L/L algebraic closure.

G =2 Ggun =2 1.

Wi acts continuously on L. Hence we may consider the
cohomology of the topological group Wi with coefficients in L.

Proposition
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Cohomology of W

1—1 —>Wg — W, —1

gives a spectral sequence
Ey! = H'(Wy, H/(I,L")) = H™ (Wi, L")
The field L is (C1). Hence

IT T~ g T o L* j=0

Hence the spectral sequence degenerates into
H! Wy, L) = H (W, L*)
Exact sequence of Wj-modules

0—0f — L7 0
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Cohomology of W

0 1>0
Moreover we have
' Z 1=0
Hz(Wk,Z) = HOIIl(Wk,Z) =27 i=1
0 7> 1.

0—0f — L7 50
gives a long exact sequence
0= O0f = H' Wy, L) - Z —0— H (Wy,L*) = Z — 0.

d |
an Hi(Wi, LX) = 0 for i > 1.
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Cohomology of W

Proof of the Lemma : RT'(Wj, Of) ~ O5[0]

Of =UPD2UL D DU D Up == 1+%;
OIX(ZU?(QU}(Q“'QU}(D Uk =1+ P
: (i E*i=0

HOXY =Yt Yyttt >~ Y
gr'(Or) = U /Up Eoi>1
‘ i1y E* i=0
) XN . 70 i+1 ~

g1 (OF) 1= Ui /UL —{k .

RT(Wj, k™) = RD(Gy, k) =2 EX[0]
RD(Wy,, k) = RU(Gy, k) = k[0]
We obtain ' '
RU(Wy,, OF JU1) = O /UK (0]
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Cohomology of W

Proof of the Lemma : RT'(Wj, Of) = O[0]

Recall that
RI(W, OF Ju}) = OF Juic[0] =: O Jul;.

We obtain
RT(Wy, Of) = RT(Wj, Rlim OF /U})
= Rlim RT(Wy, OF /U,)

= Rlim O} /U
Ox.

12

End of the proof!

Baptiste Morin 9/26



Cohomology of W

We have
K> 1=20
i —=x\~ ) 0 1=1
0 1> 2

Baptiste Morin 10/26



Cohomology of W

We have
K> 1=20
i —=x\~ ) 0 1=1
0 1> 2

If we replace Gk by Wi and K~ by L™,

Baptiste Morin 10/26
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We have
K> 1=20
i —=x\~ ) 0 1=1
0 1> 2

If we replace Gk by Wi and K by L™, we get

‘ KX i=0
HWg, LYY= 7 i=1
0 i>1
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Cohomology of W

Note that

i = lim O U
is profinite. We need to endow the previous cohomology groups with
their natural topologies.
We consider the quasi-abelian category LCA of locally compact
abelian groups. We may define its bounded derived category
D?(LCA). There exists a full subcategory

D’(FLCA) C D(LCA)

which is a symmetric monoidal closed category. In other words, it
has a (derived) ®” and (derived) internal RHom. For example, we

have
OF @R =0.
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In particular we have H?(Wg,R/Z(1)) — R/Z.

H' Wk, R/Z) @ H* (W, Z(1)) — H?*(Wg,R/Z(1)) > R/Z

is a perfect pairing of locally compact abelian groups, for any i € Z.

Hom(H'(Wg,R/Z),R/Z) = Hom(Hom(W, R/Z),R/Z) = WP,

Corollary

H' (W, Z(1)) H'(Wk,R/Z)"
K~ — wgp

Local C.F.T

y
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X /K smooth proper connected algebraic variety of dimension d — 1.

Conjecture

There exists a cohomology theory

X — RT..(X,Z(n)) € DY(FLCA), VneZ

o HX(X ,R/Z(d)) = R/Z.

@ Perfect pairing of locally compact abelian groups Vi € 7. :

H! (X,R/Z) ® H2(X,Z(d)) = H2%(X,R/Z(d)) > R/Z.
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Cohomology of W
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The previous conjecture holds if X is a curve and n = 0. In
particular we have a perfect pairing

H;, (X, R/Z) ® Hy (X, Z(2)) — Ho(X,R/Z(2)) = R/Z
of locally compact abelian groups Vi € 7.

e Start with RT (X, Z(n))
(which generalizes RT' (G, K *)).
@ Replace the role of G by Wk.

e "Complete partly” the motivic complex Z(n)
(which generalizes K™ ~ L™ ).

@ Keep track of the topology induced by the completion process.

Baptiste Morin 19/26
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Application to Class Field Theory of curves

Classical Class Field Theory for curves (Bloch, Kato, Saito)

X smooth projective geometrically connected curve over K.

Goal : Describe 73" (X).

K (X) the function field of X.
Xy the set of closed points of X.
For z € Xy, denote by (z) its residue field.

SK1(X) := Coker | Ky(K(X)) %5 @ w(a)®

z€Xo
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Nm: k(z)* — K* Vxe Xy

induce the global norm map

N:SKi(X) — K~
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Application to Class Field Theory of curves

k(z) is a finite extension of the base field K.
Nm: k(z)* — K* Vxe Xy
induce the global norm map

N:SKi(X) — K~

k(@) LCET

GN(I) = W?b( ) — ﬂ'?b(X) Vo € XO
induce the reciprocity map

rec : SK1(X) — mP(X)

Baptiste Morin 21/26



Application to Class Field Theory of curves

We have a diagram with exact rows :

00— SK; (X)) —= SKi(X) X K*

lreco \Lrec lL.C.F.T

0 —= 7P (X)8° ——mi*(X) —= G

Baptiste Morin 22/26



Application to Class Field Theory of curves

We have a diagram with exact rows :

00— SK; (X)) —= SKi(X) X K*

lreco \Lrec lL.C.F.T

0 —— mf(X)E0 —— m3*(X) —= G

Theorem (Shuji Saito)

o Kernel of rec (resp. rec®) is the maximal divisible subgroup of
SK1(X) (resp. SK1(X)?).

Baptiste Morin 22/26



Application to Class Field Theory of curves

We have a diagram with exact rows :

00— SK; (X)) —= SKi(X) X K*

lreco \Lrec lL.C.F.T

0 —= 7P (X)8° ——mi*(X) —= G

Theorem (Shuji Saito)

o Kernel of rec (resp. rec®) is the maximal divisible subgroup of
SK1(X) (resp. SK1(X)?).

o Image of rec® is finite.

Baptiste Morin 22/26



Application to Class Field Theory of curves

We have a diagram with exact rows :

00— SK; (X)) —= SKi(X) X K*

lreco \Lrec lL.C.F.T

0 —— mf(X)E0 —— m3*(X) —= G

Theorem (Shuji Saito)

o Kernel of rec (resp. rec®) is the maximal divisible subgroup of
SK1(X) (resp. SK1(X)?).

o Image of rec® is finite.

o Cokernel of rec® is 7.
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Application to Class Field Theory of curves

Remark
The reciprocity map

rec : SK1(X) = m(X)

has a big kernel and a big cokernel.
This is because étale motivic cohomology does not satisfy any
duality; in particular

SK1(X) = H3(X, Z(2))

is not dual to

Helt(Xa Q/Z) ~ 7raiﬂD(X)D-
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Let's use Weil-Arakelov cohomology instead of étale cohomology.

We have
HL(X,R/Z) = Hom(m3(X)w, R/Z)

where (X )y is a dense subgroup of 7#P(X). For example, if
X = Spec(K) then

(X )w = Wi C GR.

The duality theorem stated previously gives

H3 (X, Z(2)) = Hy(X,R/Z)P 5 7> (X)w

is an isomorphism of locally compact abelian groups.
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Application to Class Field Theory of curves

We have
0 — SKi(X)/div = H3(X,Z(2)) - Z" —= 0
and the classical reciprocity map factors as follows :

H3(X,7(2)) 5 SK1(X) - SK(X)/div —

— H3(X,7(2)) 5 P (X)w — 7P (X).

Forgetting the contribution of the base field we get
H3(X,7(2))° 5 SK1(X)? - SK(X)%/div <

= H3L(X,Z2(2))° 5 7P (X)F° < niP(X)=*.
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