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Abstract. Under certain assumptions, we define cohomological complexes
of locally compact abelian groups associated with varieties over p-adic fields.
Then we prove a duality theorem which takes the form of Pontryagin duality
between locally compact cohomology groups.

1. Introduction

Let K be a finite extension of Qp. Let OK be the ring of integers in K and let
X be a regular, proper and flat scheme over OK . We denote by XK its generic
fiber and by i : Xs → X its special fiber. Assuming certain expected property
of Bloch’s cycle complexes Z(n), we define an exact triangle

(1) RΓar(Xs, Ri!Z(n))→ RΓar(X ,Z(n))→ RΓar(XK ,Z(n))

in Db(LCA), for any Tate twist n ∈ Z. Here we denote by LCA be the quasi-
abelian category of locally compact abelian groups and by Db(LCA) its bounded
derived category, as defined in [13]. We also consider the full subcategory
FLCA ⊆ LCA consisting of locally compact abelian groups of finite ranks in the
sense of [13], and its bounded derived category Db(FLCA), which is a closed
symmetric monoidal category. We denote by RHom(−,−) the internal Hom
and by ⊗L the tensor product in Db(FLCA). For any A ∈ FLCA, we set

RΓar(−, A(n)) := RΓar(−,Z(n))⊗LA

where ⊗L denotes the tensor product in Db(FLCA).
Suppose that X is connected and d-dimensional. We give an alternative

construction of the triangle (1) for n = 0, d in order to prove Theorem 1.2
below, which requires the following

Hypothesis 1.1. The reduced scheme (Xs)red is a strict normal crossing scheme,
and the complex RΓW (Xs,Zc(0)) is a perfect complex of abelian groups, where
Zc(0) denotes the Bloch cycle complex in its homological notation [9] and RΓW (Xs,−)
denotes Weil-étale cohomology.

Theorem 1.2. Suppose that either d ≤ 2 or that Xs satisfies Hypothesis 1.1.
Then there is a trace map H2d

ar (XK ,R/Z(d))→ R/Z and an equivalence

RΓar(XK ,R/Z(n))
∼−→ RHom(RΓar(XK ,Z(d− n)),R/Z[−2d])

in Db(FLCA), for n = 0, d.
1
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Corollary 1.3. Suppose that Xs satisfies Hypothesis 1.1 and suppose moreover
that X → Spec(OK) has smooth or log-smooth reduction.Then there is perfect
pairing of locally compact abelian groups

H i
ar(XK ,R/Z(n))×H2d−i

ar (XK ,Z(d− n))→ H2d
ar (XK ,R/Z(d))→ R/Z

for n = 0, d and any i ∈ Z.

The ad-hoc definitions given in this paper are of preliminary nature. In fact
we conjecture the existence of a cohomology theory on the category of separated
schemes of finite type over Spec(OK) satisfying the conclusion of Theorem 1.2
for any Tate twist n ∈ Z. However, we do not expect Corollary 1.3 to be
true in general, since the groups H i

ar(XK ,Z(n)) are not expected to be locally
compact in general. Instead, they should be seen as condensed abelian groups
(or in the language used in this paper, as objects of the heart LH(LCA) of the
left t-structure on Db(LCA)). However, we expect an isomorphism of compact
groups

H i
ar(X ,R/Z(n)) ' H2d+1−i

ar (Xs, Ri!Z(d− n))D

for any i, n ∈ Z, where (−)D denotes the Pontryagin dual. Concerning the
relationship between

RΓar(−, A(n)) := RΓar(−,Z(n))⊗LA

and known cohomology theories, we expect the following

Conjecture 1.4. We set X := XK . For any prime l, possibly l = p, one has
an isomorphism

RΓar(X,Z(n))⊗̂Zl ' RΓet(X,Zl(n))

where (−)⊗̂Zl := holim(−⊗L Z/l•) is the l-adic completion functor. For l 6= p,
one has an isomorphism

RΓar(X,Zl(n)) ' RΓet(X,Zl(n))

For l = p, one has an isomorphism

RΓar(X,Qp(n)) ' RΓsyn(X,n)

where the right hand side is Niziol-Nekovar syntomic cohomology, and an iso-
morphism between

RΓar(X ,Z(n))⊗̂Qp ' RΓar(X ,Qp(n))

and Fontaine-Messing syntomic cohomology. Moreover, we have

dimQl
H i
ar(X,Ql(n)) = dimRH

i
ar(X,R(n))

for any i ∈ Z and any l 6= p. In particular, the left hand side is independent on
l 6= p. Finally, we have

RΓar(X ,R(n)) ' RΓWh(Xs,Z(n))⊗ R

where the right hand side is motivic Weil-h cohomology [8], and an exact triangle

RΓW (Xs,Zc(d− n))R → RΓWh(Xs,Z(n))R → RΓar(X,R(n)).
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Note that Conjecture 1.4 would provide a map

RΓsyn(X,n) ' RΓar(X,Qp(n)) −→ RΓar(X,Z(n))⊗̂Qp ' RΓet(X,Qp(n)).

This map is expected to be an isomorphism if and only if n ≥ d. The ex-
istence of a cohomology theory satisfying these properties and in particular
Pontryagin duality was sugested by the "Weil-Arakelov cohomology" of arith-
metic schemes, which is conditionally defined in [4] for proper regular schemes
over Spec(Z). One advantage that the theory RΓar(−, A(n)) should have over
étale motivic cohomology RΓet(−,Z(n)) for varieties over p-adic fields is the fact
that RΓar(−, A(n)) is expected to satisfy a duality as in Conjecture 1.2, whereas
étale motivic cohomology does not satisfy any duality. It gives for example a
new viewpoint on Class Field Theory, as we shall explain in a subsequent paper.

2. Locally compact abelian groups

2.1. Derived ∞-categories. Let U be a Grothendieck universe and let A be a
U-small additive category. Let Cb(A) be the U-small differential graded category
of bounded complexes of objects in A and let N ⊂ Cb(A) be a full subcategory
which is closed under the formation of shifts and under the formation of mapping
cones. Then Ndg(Cb(A)) is a U-small stable∞-category and Ndg(N ) is a stable
∞-subcategory of Ndg(Cb(A)) [18, Proposition 1.3.2.10], where Ndg(−) denotes
the differential graded nerve [18, Construction 1.3.1.6]. The Verdier quotient
Ndg(Cb(A))/Ndg(N ) is defined as the cofiber of the functor

Ndg(N )→ Ndg(Cb(A))

computed in the ∞-category Catex
∞ of U-small stable ∞-categories and exact

functors. Let S be the set of morphisms f in Ndg(Cb(A)) such that Cofib(f) ∈
Ndg(N ). Then the functor

Ndg(Cb(A))→ Ndg(Cb(A))/Ndg(N )

induces an equivalence [3, Theorem 1.3]

Ndg(Cb(A))[S−1]
∼→ Ndg(Cb(A))/Ndg(N ).

Moreover, we have an equivalence of categories

h(Ndg(Cb(A))/Ndg(N )) ' h(Ndg(Cb(A)))/h(Ndg(N )))

where h(−) denotes the homotopy category, and the right hand side is the
classical Verdier quotient [2, Proof of Prop. 5.9]. Note that the homotopy
category of a stable ∞-category is triangulated [18, Theorem 1.1.2.14].

If A is a quasi-abelian category in the sense of [26] (or more generally an
exact category), we define its bounded derived ∞-category

Db(A) := Ndg(Cb(A))/Ndg(N ) ' Ndg(Cb(A))[S−1]

where N ⊂ Cb(A) is the full subcategory of strictly acyclic complexes, and S is
the set of strict quasi-isomorphisms. The homotopy category

Db(A) := h(Db(A))

is equivalent to the bounded derived category of the quasi-abelian category A
in the sense of [26].
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2.2. The category Db(LCA). We denote by LCA be the quasi-abelian cate-
gory of locally compact abelian groups, which are elements of a universe U ′. Let
U be a larger universe such that LCA is U-small. Let FLCA ⊂ LCA be the
quasi-abelian category of locally compact abelian groups of finite ranks in the
sense of [13, Def. 2.6]. Let Db(LCA) (resp. Db(FLCA)) be the bounded derived
∞-category of LCA (resp. of FLCA). Hence Db(LCA) (resp. Db(FLCA)) is a
stable ∞-category in the sense of [18] whose homotopy category is the bounded
derived category Db(LCA) (resp. Db(FLCA)) as defined in [13]. It is more
convenient to work with the derived ∞-category Db(LCA) rather than with its
homotopy category. For example, let Fun(∆1,Db(LCA)) be the ∞-category
of arrows in Db(LCA). Taking the mapping fiber (or cofiber) of a morphism
defines a functor (see [18, Remark 1.1.1.7])

Fib : Fun(∆1,Db(LCA)) −→ Db(LCA)
C → C ′ 7−→ C ×C′ 0

.

The stable ∞-category Db(LCA) is endowed with a t-structure by [13], since a
t-structure on a stable ∞-category is defined as a t-structure on its homotopy
category [18, Definition 1.2.1.4]. This also applies to Db(FLCA). Let TA be
the quasi-abelian category of topological abelian groups, and define Db(TA)
and Db(TA) as above. The inclusions FLCA ⊂ LCA ⊂ TA send strict quasi-
isomorphisms to strict quasi-isomorphisms, hence induce functors

Db(FLCA)→ Db(LCA)→ Db(TA).

The functor disc : TA → Ab, sending a topological abelian group to its un-
derlying discrete abelian group, sends strict quasi-isomorphisms to usual quasi-
isomorphism. This yields a functor

disc : Db(TA)→ Db(Ab).

We denote by XD the Pontryagin dual of the locally compact abelian group X.
Recall that XD := Hom(X,R/Z) is the group of continuous morphisms X →
R/Z endowed with the compact-open topology, and that Pontryagin duality
gives an isomorphism of locally compact groups

X
∼→ XDD.

Then the functor (−)D sends strict quasi-isomorphisms to strict quasi-isomorphisms
and locally compact compact abelian groups of finite ranks to locally compact
groups of finite ranks. We obtain equivalences of ∞-categories

Db(LCA)op −→ Db(LCA)
X 7−→ XD

and
Db(FLCA)op −→ Db(FLCA)

X 7−→ XD .

In [13], the authors define functors

RHomLCA(−,−) : Db(LCA)op ×Db(LCA)→ Db(TA)

and
RHomFLCA(−,−) : Db(FLCA)op ×Db(FLCA)→ Db(FLCA).
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The construction of the functor RHomFLCA(−,−) actually gives a functor of
stable ∞-categories

RHom(−,−) : Db(FLCA)op ×Db(FLCA)→ Db(FLCA).

Indeed, let I (resp. P) be the additive category of divisible (resp. codivisible)
locally compact abelian groups I (resp. P ) of finite ranks such that IZ = 0
(such that PS1 = 0), see [13, Def. 3.2]. Define

Db(I) := Ndg(Cb(I))/Ndg(NI)

where NI ⊂ Cb(I) is the dg-subcategory of strictly acyclic bounded complexes.
We define similarly

Db(P) := Ndg(Cb(P))/Ndg(NP).

The functor

(2) Db(I)→ Db(FLCA)

is an exact functor of stable∞-categories which induces an equivalences between
the corresponding homotopy categories by [13, Cor. 3.10]. It follows that (2)
is an equivalence of stable ∞-categories. Similarly Db(P) → Db(FLCA) is an
equivalence. We may therefore define

RHom(−,−) : Db(FLCA)op ×Db(FLCA)
∼← Db(P)op ×Db(I)→ Db(FLCA)

since the functor
Cb(P)op × Cb(I) −→ Cb(FLCA)

(P, I) 7−→ Hom•(P, I) := Tot(Hom(P, I))

sends a pair of strict quasi-isomorphisms to a strict quasi-isomorphism [13, Cor.
3.7]. Here Hom(P, I) is the double complex of continuous maps endowed with
the compact-open topology, and Tot denotes the total complex. Note that the
Pontryagin dual XD is given by the functor

RHom(−,R/Z) : Db(FLCA)op −→ Db(FLCA)
X 7−→ XD .

Following [13], we define the derived topological tensor product

Db(FLCA)×Db(FLCA) −→ Db(FLCA)
(X,Y ) 7−→ X⊗LY := RHom(X,Y D)D

.

Lemma 2.1. The functor Db(FLCA)→ Db(LCA) is an exact and fully faithful
functor of stable ∞-categories.

Proof. We first show that this functor is exact. It sends zero objects to zero ob-
jects, so it is enough to check that it sends cofiber sequences to cofiber sequences.
Let

(3) X
f→ Y → Z

be a cofiber sequence in Db(FLCA). The map f is equivalent to a morphism of
complexes f0 : P → I, where P ∈ Cb(P) (resp. I ∈ Cb(I)) is given with a strict
quasi-isomorphism P

∼→ X (resp. Y ∼→ I). Then Cone(f0) ∈ Db(FLCA) and

(4) P
f0→ I → Cone(f0)
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is a cofiber sequence in Db(FLCA) equivalent to (3). Similarly, (4) is a cofiber
sequence equivalent to (3) in Db(LCA). Hence (3) is a cofiber sequence in
Db(LCA).

Now we show that the functor is fully faithful. The functors RHomLCA(−,−)
and RHomFLCA(−,−) induce the same functor

Db(FLCA)op ×Db(FLCA)→ Db(TA).

Moreover, for any X,Y ∈ Db(FLCA) we have

disc(H0(RHomLCA(X,Y ))) ' HomDb(LCA)(X,Y )

and
disc(H0(RHomFLCA(X,Y ))) ' HomDb(FLCA)(X,Y ).

Therefore, the map

HomDb(FLCA)(X,Y )→ HomDb(LCA)(X,Y )

is an isomorphism of abelian groups, i.e. Db(FLCA)→ Db(LCA) is fully faithful.
Hence

(5) Db(FLCA)→ Db(LCA)

is an exact functor of stable ∞-categories which induces a fully faithful functor
between the corresponding homotopy categories. It follows that (5) is fully
faithful.

�

Therefore we may identify Db(FLCA) with its essential image in Db(LCA).
Recall also that Db(LCA) has a t-structure. We denote its heart by LH(LCA).
It is an abelian category containing LCA as a full subcategory.

Lemma 2.2. Let X ∈ Db(LCA). Then X ∈ Db(FLCA) if and only if H i(X) ∈
LH(FLCA) for any i.

Proof. If X → Y → Z is a fiber sequence in Db(LCA) such that X,Z ∈
Db(FLCA), then Y ∈ Db(FLCA). Indeed, Y is then equivalent to the fiber
of a morphism Z → X[1] in Db(FLCA), hence Y belongs to Db(FLCA) by the
previous lemma.

Let X ∈ Db(LCA) such that H i(X) ∈ LH(FLCA) for any i. Suppose that X
is cohomologicaly concentrated in degrees ≤ n, and consider the fiber sequence

τ<nX → X → Hn(X)[−n].

Since Hn(X)[−n] ∈ Db(FLCA), we have X ∈ Db(FLCA) if and only if τ<nX.
We obtain X ∈ Db(FLCA) by induction on n since X is bounded and since any
zero object belongs to Db(FLCA).

The converse is obvious.
�

The inclusion Ab ⊂ LCA induces an exact functor

i : Db(Ab)→ Db(LCA)
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Proposition 2.3. The exact functor i : Db(Ab) → Db(LCA) is fully faithful
and left adjoint to

disc : Db(LCA)→ Db(Ab).

Proof. The functor
Cb(Ab)

i→ Cb(LCA)
disc→ Cb(Ab)

is isomorphic to the identity functor of Cb(Ab). We obtain a natural transfor-
mation

(6) IdDb(Ab)
∼→ disc ◦ i.

Similarly, there is a natural transformation

i ◦ disc→ IdDb(Ab).

Let X ∈ Db(Ab) and let Y ∈ Db(LCA). Let F ∼→ X be a bounded flat
resolution, and let Y ∼→ D be a strict quasi-isomorphism where D is a bounded
complex of divisible locally compact abelian groups. Then F is a bounded
complex of codivisible discrete groups F i (in particular, such that F iS1 = 0).
Therefore, we have

RHomLCA(i(X), Y ) ' Hom•(F,D) := Tot(Hom(F,D))

by [13, Corollary 4.7], where Hom(F,D) is the double complex of continuous
maps endowed with the compact-open topology, and Tot denotes the total com-
plex. We obtain

disc (RHomLCA(i(X), Y )) ' disc (Hom•(F,D))

' Hom•(F,disc(D))

' RHom(X,disc(Y )).

In view of [13, Proposition 4.12] we have

H0(disc (RHomLCA(i(X), Y [−n]))) ' disc(H0 (RHomLCA(i(X), Y [−n])))

' HomDb(LCA)(i(X), Y [−n])

' π0(MapDb(LCA)(i(X),ΩnY ))

' πn(MapDb(LCA)(i(X), Y ))

where Ω(−) := 0×(−) 0 is the loop space functor. Similarly we have

H0(RHom(X,disc(Y [−n]))) ' πn(MapDb(Ab)(X,disc(Y ))).

Hence the map

MapDb(LCA)(i(X), Y )→ MapDb(Ab)(X,disc(Y ))

is an equivalence of ∞-groupoids. The result then follows from [17, Proposition
5.2.2.8] and from the fact that the unit transformation (6) is an equivalence. �

Definition 2.4. An object X ∈ Db(LCA) lies in the essential image of the
functor i : Db(Ab)→ Db(LCA) if and only if the co-unit map i ◦ disc(X)→ X
is an equivalence. Such an object X ∈ Db(LCA) is called discrete.

Notation 2.5. If X,Y ∈ Db(Ab), then we denote by RHom(X,Y ) ∈ Db(Ab) ⊆
Db(LCA) the usual RHom seen as an object of Db(LCA).
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Lemma 2.6. Let X,Y ∈ Db(Ab). If the image of X and Y belong to Db(FLCA),
then there is a canonical map

i(RHom(X,Y ))→ RHom(X,Y ).

Moreover, if X,Y are perfect complexes of abelian groups, then this map is an
equivalence.

Proof. Let P ∼→ X and Y ∼→ I be strict quasi-isomorphisms where P ∈ Cb(P)
(resp. I ∈ Cb(I)). Let P δ and Iδ the underlying complexes of discrete abelian
groups. Then the maps P δ ∼→ X and Y

∼→ Iδ are quasi-isomorphisms in the
usual sense. Hence we have Hom•(X, Iδ) ' RHom(X,Y ), where Hom• denotes
the total complex of the double complex of morphisms of abelian groups. We
denote by Hom•(P, I) the total complex of the double complex of continuous
morphisms endowed with the compact-open topology. Then we have morphisms

RHom(X,Y ) ' Hom•(X, Iδ)→ Hom•(X, I)→ Hom•(P, I) ' RHom(X,Y ).

Suppose now that X and Y are perfect complexes of abelian groups. We may
suppose that Xi is a finitely generated free abelian group for all i ∈ Z, zero for
almost all i, and similarly for Y . We have a strict quasi-isomorphism

Y
∼→ I := Tot[Y ⊗ R→ Y ⊗ R/Z]

where [Y ⊗ R → Y ⊗ R/Z] is seen as a double complex and Tot is the total
complex. ThenX ∈ Cb(P) and I ∈ Cb(I) and we have a strict quasi-isomorphism

Hom•(X,Y )
∼→ Hom•(X, I).

We obtain

RHom(X,Y ) ' Hom•(X,Y )
∼→ Hom•(X, I) ' RHom(X,Y ).

�

2.3. Profinite completion.

Definition 2.7. We define a functor

(−)⊗̂Ẑ : Db(Ab) −→ Db(LCA)
X 7−→ (i(colimRHom(X,Z/m)))D

,

where we compute RHom(X,Z/m) and the colimit colimRHom(X,Z/m) over
m in the ∞-category Db(Ab). We define similarly

(−)⊗̂Zp : Db(Ab) −→ Db(LCA)
X 7−→ (i(colimRHom(X,Z/p•)))D .

For any X ∈ Db(LCA) we define

RHom(X,Z/m) := Fib(XD m−→ XD)

and
X⊗LZ/m := Cofib(X

m−→ X).
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Proposition 2.8. Let X ∈ Db(Ab). Suppose that RHom(i(X),Z/m) ∈ Db(LCA)
is discrete for any m. Then we have an equivalence

X⊗̂Ẑ ' lim←−
(
i(X)⊗LZ/m

)
where the limit is computed in the ∞-category Db(LCA) and an equivalence

disc(X⊗̂Ẑ) ' X⊗̂Ẑ := lim←−(X ⊗L Z/m) ∈ Db(Ab).

Proof. The co-unit map

i ◦ discRHom(i(X),Z/m)→ RHom(i(X),Z/m)

is an equivalence by assumption. Moreover we have

RHom(X,Z/m) ' discRHom(i(X),Z/m)

hence
i RHom(X,Z/m)

∼→ RHom(i(X),Z/m).

We obtain

X⊗̂Ẑ := (i(colimRHom(X,Z/m)))D

' (colim (i RHom(X,Z/m)))D

' lim
(
i RHom(X,Z/m))D

)
' lim

(
RHom(i(X),Z/m))D

)
' lim

(
i(X)⊗LZ/m

)
since the left adjoint functor i commutes with arbitrary colimits, and since (−)D

transforms colimits into limits. Hence we have

disc(X⊗̂Ẑ) ' disc
(
lim(i(X)⊗LZ/m)

)
' lim

(
disc(i(X)⊗LZ/m)

)
' lim

(
Cofib(disc ◦ i(X)

m−→ disc ◦ i(X))
)

' lim
(
X ⊗L Z/m

)
since the right adjoint functor disc commutes with arbitrary limits. �

Remark 2.9. Suppose that X ∈ Db(Ab) is such that X ⊗L Z/m is a perfect
complex for any Z/mZ-modules. Then RHom(i(X),Z/m) is discrete.

Remark 2.10. We have

X⊗̂Ẑ ' RHom
(
hocolimRHom(X ⊗L Z/m,Q/Z),R/Z

)
.

Lemma 2.11. We have a canonical map X → X⊗̂Ẑ in Db(LCA).

Proof. The composite is an evident map

i(RHom(X,Z/m))
∼→ i ◦ disc(RHom(X,Z/m))→ RHom(X,Z/m))

→ RHom(X,R/Z) ' CD

inducing

i(colimRHom(X,Z/m)) ' colim i(RHom(X,Z/m))→ XD.



10 T. GEISSER AND B. MORIN

We obtain

X
∼→ XDD → (i(colimRHom(X,Z/m)))D =: X⊗̂Ẑ.

�

Remark 2.12. Let X ∈ Db(Ab) such that its image in Db(LCA) belongs to
Db(FLCA). Then one may consider X⊗LẐ and X⊗LẐp where ⊗L is the ten-
sor product in Db(FLCA). There are canonical maps X⊗LẐ → X⊗̂LẐ and
X⊗LZp → X⊗̂LZp but those maps are not equivalences in general. For exam-
ple, we have

Qp/Zp⊗LZp ' Qp/Zp
while

Qp/Zp⊗̂
LZp ' Zp[1].

3. The complexes RΓar(XK ,Z(n)) in Db(LCA).

In this section we give a definition of RΓar(XK ,Z(n)) assuming that the pair
(X , n) satisfies Hypothesis 3.1 below. Hypothesis 3.1 is known for n = 0, 1 and
arbitrary X , hence our definition is unconditional in those cases.

Let p be a prime number, let K/Qp be a finite extension, and let K̄/K be
an algebraic closure. We denote by Kun the maximal unramified extension of
K inside K̄. Let X be a connected (d− 1)-dimensional smooth proper scheme
over K. Suppose that X has a proper regular model X/OK , and let Xs be its
special fiber, where s ∈ Spec(OK) is the closed point. We consider the following
diagram.

XKun
j̄ //

��

XOKun

��

Xs̄
īoo

��
XK

j // X Xs
ioo

For any n ≥ 0, we denote by Z(n) Bloch’s cycle complex, which we consider
as a complex of étale sheaves. We denote by Gκ(s) ' Ẑ and by Wκ(s) ' Z the
Galois group and the Weil group of the finite field κ(s). We define

RΓW (XK ,Z(n)) := RΓ(Wκ(s), RΓet(XKun ,Z(n))),

RΓW (X ,Z(n)) := RΓ(Wκ(s), RΓet(XOKun ,Z(n))),

RΓW (Xs, Ri!Z(n)) := RΓ(Wκ(s), RΓet(Xs̄, Rī!Z(n)).

There is a fiber sequence

(7) RΓet(Xs̄, Rī!Z(n))→ RΓet(XOKun ,Z(n))→ RΓet(XKun ,Z(n)).

Applying RΓ(Wκ(s),−) to (7) we obtain the fiber sequence

(8) RΓW (Xs, Ri!Z(n))→ RΓW (X ,Z(n))→ RΓW (XK ,Z(n)).
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Applying the natural transformation RΓ(Gκ(s),−) → RΓ(Wκ(s),−) to (7), we
obtain the morphism of fiber sequences

RΓet(Xs, Ri!Z(n))

��

// RΓet(X ,Z(n))

��

// RΓet(XK ,Z(n))

��
RΓW (Xs, Ri!Z(n)) // RΓW (X ,Z(n)) // RΓW (XK ,Z(n))

Recall from [8] the definition of eh-motivic cohomology, which we denote by
RΓeh(−,Z(n)).

Hypothesis 3.1. We have a reduction map

ī∗ : RΓet(XOKun ,Z(n))→ RΓeh(Xs̄,Z(n)).

Moreover, the complexes RΓet(X ,Z(n)), RΓeh(Xs,Z(n)) and RΓet(Xs, Ri!Z(n))
are cohomologically bounded.

Following [8], we define Wh-motivic cohomology as follows:

RΓWh(Xs,Z(n)) := RΓ(Wκ(s), RΓeh(Xs,Z(n))).

Definition 3.2. Under hypothesis 3.1, we have a map

(9) RΓet(X ,Z(n))→ RΓeh(Xs,Z(n))

and we denote by C(X , n) its cofiber, so that we have a cofiber sequence

(10) RΓet(X ,Z(n))→ RΓeh(Xs,Z(n))→ C(X , n).

Similarly, we have a map

(11) RΓW (X ,Z(n))→ RΓWh(Xs,Z(n))

and we denote by CW (X , n) its cofiber, so that we have a cofiber sequence

(12) RΓW (X ,Z(n))→ RΓWh(Xs,Z(n))→ CW (X , n).

Lemma 3.3. Assume Hypothesis 3.1. Then there is a morphism C(X , n) →
CW (X , n) inducing equivalences

C(X , n)⊗̂Ẑ ∼−→ CW (X , n)⊗̂Ẑ

C(X , n)⊗̂Ẑ ∼−→ CW (X , n)⊗̂Ẑ
in Db(Ab) and Db(LCA) respectively.

Proof. The complex C(X , n) is bounded by Hypothesis 3.1, and it follows that
CW (X , n) is bounded as well. The morphism of functors RΓ(Gκ(s),−) →
RΓ(Wκ(s),−) applied to the map of Hypothesis 3.1 gives a morphism from (9)
to (11), hence a morphism of cofiber sequences

RΓet(X ,Z(n))

��

// RΓeh(Xs,Z(n))

��

// C(X , n)

��
RΓW (X ,Z(n)) // RΓWh(Xs,Z(n)) // CW (X , n)
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The left and the middle vertical arrows are equivalences with finite coefficients.
It follows that we have

C(X , n)⊗L Z/mZ ' CW (X , n)⊗L Z/mZ

for any m. Hence C(X , n)⊗̂Ẑ and CW (X , n)⊗̂Ẑ are equivalent by Remark
2.10. �

Recall that we have fiber sequences

(13) RΓet(X ,Z(n))→ RΓeh(Xs,Z(n))→ C(X , n)

and

(14) RΓet(Xs, Ri!Z(n))→ RΓet(X ,Z(n))→ RΓet(XK ,Z(n)).

Proposition 3.4. Assume Hypothesis 3.1. Then there exist RΓ̂et(X ,Z(n)) ∈
Db(LCA) and RΓ̂et(XK ,Z(n)) ∈ Db(LCA) endowed with fiber sequences

(15) RΓ̂et(X ,Z(n))→ RΓeh(Xs,Z(n))→ C(X , n)⊗̂Ẑ
and

(16) RΓet(Xs, Ri!Z(n))→ RΓ̂et(X ,Z(n))→ RΓ̂et(XK ,Z(n))

in Db(LCA).

Proof. The proof is similar to the proof of Proposition 3.5 below. �

Proposition 3.5. Assume Hypothesis 3.1. Then there exist RΓar(X ,Z(n)) ∈
Db(LCA) and RΓar(XK ,Z(n)) ∈ Db(LCA) endowed with fiber sequences

(17) RΓar(X ,Z(n))→ RΓWh(Xs,Z(n))→ CW (X , n)⊗̂Ẑ
and

(18) RΓW (Xs, Ri!Z(n))→ RΓar(X ,Z(n))→ RΓar(XK ,Z(n))

in Db(LCA).

Proof. Composing the morphism in Db(Ab)

RΓWh(Xs,Z(n))→ CW (X , n)

and the morphism in Db(LCA)

CW (X , n)→ CW (X , n)⊗̂Ẑ
we obtain

(19) RΓWh(Xs,Z(n))→ CW (X , n)⊗̂Ẑ.
We define RΓar(X ,Z(n)) as the fiber of (19) so that there is a fiber sequence

(20) RΓar(X ,Z(n))→ RΓWh(Xs,Z(n))→ CW (X , n)⊗̂Ẑ
in Db(LCA). Lemma 2.11 gives a map from (12) to (20) hence a map

RΓW (X ,Z(n))→ RΓar(X ,Z(n)).

Then we define RΓar(XK ,Z(n)) ∈ Db(LCA) as the cofiber of the composite
map

RΓW (Xs, Ri!Z(n))→ RΓW (X ,Z(n))→ RΓar(X ,Z(n)).
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�

Remark 3.6. For n = 0, 1, Hypothesis 3.1 holds, so that RΓar(X ,Z) and
RΓar(XK ,Z(1)) are unconditionally defined.

Proposition 3.7. The maps

RΓ̂et(X ,Z)→ RΓeh(Xs,Z)

and
RΓar(X ,Z)→ RΓWh(Xs,Z)

are equivalences.

Proof. By proper base change, the maps

RΓet(X ,Z/m)→ RΓet(Xs,Z/m)→ RΓeh(Xs,Z/m)

are equivalences, hence

C(X , 0)⊗L Z/m ' CW (X , 0)⊗L Z/m ' 0.

Hence we have
C(X , 0)⊗̂Ẑ ' CW (X , 0)⊗̂Ẑ ' 0.

The result then follows from Proposition 3.4 and Proposition 3.5.
�

3.1.

Proposition 3.8. Assume Hypothesis 3.1. There are canonical maps of fiber
sequences

(13)→ (15)→ (17) and (14)→ (16)→ (18).

In particular we have canonical maps

(21) RΓet(?,Z(n))→ RΓ̂et(?,Z(n))→ RΓar(?,Z(n))

for ? = X ,XK .

Proof. The morphisms (15) → (17) and (16) → (18) are induced by the mor-
phism of functors RΓ(Gκ(s),−) → RΓ(Wκ(s),−). The morphisms (13) → (15)

and (14)→ (16) are induced by the map C(X , n)→ C(X , n)⊗̂Ẑ. �

Definition 3.9. Assume Hypothesis 3.1. We define

D(XK , n) := Cofib(δ(X,n))[−2]

where δ(XK , n) is defined as the compoition

δ(XK , n) : RΓ(Xs, Ri!Q(n))→ RΓ(X ,Q(n))→ RΓeh(Xs,Q(n)).

Theorem 3.10. Assume Hypothesis 3.1. We have fiber sequences in Db(LCA)

(22) RΓeh(Xs,Q(n))[−2]→ RΓ̂et(X ,Z(n))→ RΓar(X ,Z(n))

(23) D(XK , n)→ RΓ̂et(XK ,Z(n))→ RΓar(XK ,Z(n))

where RΓeh(Xs,Q(n))[−2] and D(XK , n) are seen as discrete objects of Db(LCA).
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Proof. Recall that the fiber of the map RΓeh(Xs,Z(n)) → RΓWh(Xs,Z(n)) is
RΓeh(Xs,Q(n))[−2], and that the map C(X , n)⊗̂Ẑ→ CW (X , n)⊗̂Ẑ is an equiv-
alence. We denote by F the fiber of the map RΓ̂et(X ,Z(n))→ RΓar(X ,Z(n)).
We obtain the diagram

F

��

∼ // RΓeh(Xs,Q(n))[−2]

��

// 0

��

RΓ̂et(X ,Z(n))

��

// RΓeh(Xs,Z(n))

��

// C(X , n)⊗̂Ẑ

'
��

RΓar(X ,Z(n)) // RΓWh(Xs,Z(n)) // CW (X , n)⊗̂Ẑ

where the rows and colons are fiber sequences. It follows that the upper left
horizontal map is an equivalence, hence the left colon gives the fiber sequence
(22). We now consider the fiber of the morphism of fiber sequences (16)→ (18).
It yields the diagram

RΓ(Xs, Ri!Q(n)))[−2] //

?

��

RΓet(Xs, Ri!Z(n)) //

��

RΓW (Xs, Ri!Z(n))

��
RΓeh(Xs,Q(n))[−2] //

��

RΓ̂et(X ,Z(n))

��

// RΓar(X ,Z(n))

��
D′(XK , n) // RΓ̂et(XK ,Z(n)) // RΓar(XK ,Z(n))

where the rows and colons are fiber sequences. Here D′(XK , n) is defined as
the cofiber of the upper left vertical morphism ?. In order to obtain the fiber
sequence (23) we need to identify the map ?. We consider the diagram with
exact rows:

RΓ(Xs, Ri!Q(n)))[−2] //

?

��

RΓet(Xs, Ri!Z(n))) //

��

RΓW (Xs, Ri!Z(n))

��
RΓeh(Xs,Q(n))[−2] //

'
��

RΓ̂et(XOK
,Z(n))

��

// RΓar(X ,Z(n)))

��
RΓeh(Xs,Q(n))[−2] // RΓeh(Xs,Z(n))) // RΓWh(Xs,Z(n)))

where the composition of the left vertical maps is (equivalent to) δ(XK , n) and
the lower left vertical map is an equivalence. Hence we have an equivalence
? ' δ(XK , n)[−2] and therefore

D′(XK , n) ' D(XK , n)

We obtain (23).
�
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Corollary 3.11. Suppose that the complexes RΓet(X ,Z/m(n)), RΓeh(Xs,Z/m(n))
and RΓet(Xs, Ri!Z/m(n)) are perfect complexes of Z/mZ-modules for any m.
Then the maps (21) induce equivalences

RΓet(X ,Z(n))⊗̂Ẑ ∼−→ RΓ̂et(X ,Z(n))δ⊗̂Ẑ ∼−→ RΓar(X ,Z(n))δ⊗̂Ẑ;

RΓet(XK ,Z(n))⊗̂Ẑ ∼−→ RΓ̂et(XK ,Z(n))δ⊗̂Ẑ ∼−→ RΓar(XK ,Z(n))δ⊗̂Ẑ

where (−)δ denotes the functor disc : Db(LCA)→ Db(Ab).

Proof. By Lemma 2.8 we have equivalences(
C(X , n)⊗̂Ẑ

)δ
⊗̂Ẑ→

(
CW (X , n)⊗̂Ẑ

)δ
⊗̂Ẑ '

(
C(X , n)⊗̂Ẑ

)
⊗̂Ẑ ' C(X , n)⊗̂Ẑ.

The result then follows from Proposition 3.8 and Theorem 3.10. �

4. Duality for strict normal crossing schemes over finite fields

4.1. Wh-cohomology of strict normal crossing schemes.

Definition 4.1. Let k be a field and let Y be a separated scheme of finite type
over k. Then Y is said to be a strict normal crossing scheme if it is étale locally
isomorphic to

Spec(k[T0, · · · , TN ]/(T0 · · ·TN ))

such that any irreducible component of Y is smooth.

Fix a base field k and let Y =
⋃
Yi be a strict normal crossing scheme

over k with components Yi, 1 ≤ i ≤ c, and Y (r) =
∐
I⊆{1,...,c},|I|=r YI , where

YI =
⋂
i∈I Yi. Consider the category C with objects smooth and proper schemes

and morphisms HomC(S, T ) the free abelian group on scheme morphisms. Then
we obtain a complex

Y (∗) = Y (0) ← Y (1) ← · · · ← Y (d),

in the category C where the maps Y (r) → Y (r−1) are given on components by

(24) (−1)k · incl : Y(i1,...,ir) → Y(i1,...,îk,...,ir).

Following [9], we denote by Zc(n) the homological version of the cycle complex.

Proposition 4.2. a) Let RΓeh(Y ∗,Z) be the total complex to the double complex
RΓeh(Y (∗),Z), where the maps are induced by pull-back along (24). Then the
natural map

RΓeh(Y,Z)→ RΓeh(Y ∗,Z)

is an equivalence.
b) Let RΓet(Y

∗,Zc(0)) be the total complex to the double complex RΓet(Y
(∗),Zc(0)),

where the maps are induced by push-forward along (24). Then the natural map

RΓet(Y
∗,Zc(0))→ RΓet(Y,Zc(0))

is an equivalence.
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Proof. The proof proceeds by induction on the number of irreducible compo-
nents c. There is nothing to show if c = 1. Let I ′ = I − {c} and Ŷ be the
normal crossing scheme built from the components of I ′. Then we obtain an
abstract blow up square where Ŷc = Yc ∩ Ŷ :

Ŷc
îc //

−ĩ
��

Ŷ

î
��

Yc
ic // Y

In case a), by eh-descent the natural map from RΓeh(Y,Z) to the shifted cone
of

RΓeh(Yc,Z)⊕RΓeh(Ŷ ,Z)
(−ĩ,̂ic)−→ RΓeh(Ŷc,Z)

is an equivalence. By induction this is quasi-isomorphic to the shifted cone of
double-complexes

RΓeh(Yc,Z)⊕RΓeh(Ŷ ∗,Z)
(−ĩ,̂ic)−→ RΓeh(Ŷ ∗c ,Z)

and we claim that this is the same complex as RΓeh(Y ∗,Z). The complexes
are the same because Y (0) = Yc

∐
Ŷ (0), and Y (i) = Ŷ (i)

∐
Ŷ

(i−1)
c is the disjoint

decomposition into those intersections which are not contained in Yc and those
which are. To see that the maps are the same, note that the map −ĩ from Yc is
the same as the map in −incl : Yi1,c → Yc appearing in Y ∗, and the other maps
are also easily seen to be the same.

The proof of b) is the same after reversing all arrows of cohomology groups
and replacing eh-descent by the localization property, which holds for etale
hypercohomology by [9]. �

Definition 4.3. For a strict normal crossing scheme Y over a finite field k
we define RΓW (Y ∗,Z) as the hypercohomology of RΓ(Wk, RΓet(Ȳ

∗,Z)), where
Ȳ ∗ is the base change of Y ∗ to the algebraic closure. Similarly, we define
RΓWh(Y ∗,Z) as the hypercohomology of RΓ(Wk, RΓeh(Ȳ ∗,Z)).

Of course, RΓW (Y ∗,Z) (respectively RΓWh(Y ∗,Z)) may also be defined as
the total complex of the double complexRΓW (Y (∗),Z) (respectivelyRΓWh(Y (∗),Z)).

Corollary 4.4. Let Y be a strict normal crossing scheme over a finite field k.
There is a canonical map

RΓW (Y ∗,Z)→ RΓWh(Y,Z).

Moreover, this map is an equivalence if resolution of singularities for schemes
over k of dimension ≤ dim(Y ) holds.

Proof. We consider the commutative square

RΓW (Y,Z) //

��

RΓW (Y ∗,Z)

��
RΓWh(Y,Z)

∼ // RΓWh(Y ∗,Z)
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where the lower horizontal map is an equivalence by Proposition 4.2. This
defines the map RΓW (Y ∗,Z)→ RΓWh(Y,Z). Moreover, assuming resolution of
singularities for schemes over k of dimension ≤ dim(Y ), the right vertical map
is an equivalence by [8, Thm. 4.3], since the schemes Y (i) are smooth. The
result follows.

�

Notation 4.5. If Y is a scheme over a finite field such that the reduced scheme
Y red is a strict normal scheme. Then we set

RΓW (Y ∗,Z) := RΓW ((Y red)∗,Z).

4.2. Duality.

Theorem 4.6. Let Y be a strict normal crossing scheme of over a finite field k
such that RΓW (Y,Zc(0)) is a perfect complex of abelian groups. Then there is a
perfect pairing

(25) RΓW (Y ∗,Z)⊗L RΓW (Y,Zc(0))→ Z[−1]

of perfect complexes of abelian groups.

Proof. We first consider the case where Y is smooth and proper. Let f : Y →
Spec(k) = s be the structure morphism. The push-forward map

Rf∗Zc(0)Y → Zc(0)s ' Z[0]

induces a trace map

RΓW (Y,Zc(0))→ RΓW (s,Z)→ Z[−1].

We consider the map

(26) RΓW (Y,Z) −→ RHom(RΓW (Y,Zc(0)),Z[−1])

induced by the pairing

RΓW (Y,Z)⊗L RΓW (Y,Zc(0))→ RΓW (Y,Zc(0))→ RΓW (s,Zc(0))→ Z[−1].

In order to show that the morphism of perfect complexes (26) is an equivalence,
it is enough to show that (26) ⊗L Z/mZ is an equivalence for any integer m.
But (26)⊗L Z/mZ may be identified with the map

RΓet(Y,Z/mZ) −→ RHom(RΓet(Y,Zc(0)/m),Q/Z[−1])

which is an equivalence by [9, Theorem 5.1]. Hence (26) is an equivalence.
Suppose now that Y is a strict normal crossing scheme. The equivalence (26)

is functorial with respect to closed immersions, hence we obtain a morphism of
double complexes

RΓW (Y (∗),Z) −→ RHom(RΓW (Y (∗),Zc(0)),Z[−1])

which induces an equivalence of total complexes

RΓW (Y ∗,Z) −→ RHom(RΓW (Y ∗,Zc(0)),Z[−1])
∼← RHom(RΓW (Y,Zc(0)),Z[−1]),

where the last equivalence follows from Proposition 4.2(b).
�
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5. Working definitions for the Tate twists n = 0, d

The aim of this section is to give an alternative definition of RΓar(XK ,Z(0))
and RΓar(XK ,Z(d)) for X of pure dimension d, which is expected to coincide
with the conditional definition given Section 3.

In order to redefine RΓar(XK ,Z(0)), we replace RΓWh(Xs,Z) by RΓW (X ∗s ,Z)
and we apply the construction of Section 3. In view of Corollary 4.4, the two
construction agree provided that resolution of singularities holds for schemes of
dimension ≤ dim(Xs).

In order to redefine RΓar(XK ,Z(d)), we again apply the construction of
Section 3 except that we complete the entire complex RΓW (X ,Z(d)) instead
of CW (X , n), so that the existence of the reduction map RΓW (X ,Z(d)) →
RΓWh(Xs,Z(d)) of Hypothesis 3.1 is no longer required. The two construction
agree provided that the cohomology of the complex RΓWh(Xs,Z(d)) consists of
cohomology groups.

5.1. Working definition for n = 0. If Xs is a strict normal crossing scheme,
we replace RΓWh(Xs,Z) with RΓW (X ∗s ,Z) where we use the notation of Defi-
nition 4.3 and Notation 4.5. There is a canonical map

RΓW (X ,Z)→ RΓW (Xs,Z)→ RΓW (X ∗s ,Z)

whose cofiber we still denote by CW (X , 0). Then we define RΓar(X ,Z) ∈
Db(LCA) and RΓar(XK ,Z) ∈ Db(LCA) endowed with fiber sequences

(27) RΓar(X ,Z)→ RΓW (X ∗s ,Z)→ CW (X , 0)⊗̂Ẑ
and

(28) RΓW (Xs, Ri!Z)→ RΓar(X ,Z)→ RΓar(XK ,Z)

in Db(LCA).

Remark 5.1. Suppose that resolution of singularities for schemes over κ(s) of
dimension ≤ d−1 holds. It follows from Corollary 4.4 that if Xs is a strict nor-
mal crossing scheme, then the complexes RΓar(X ,Z) and RΓar(XK ,Z) defined
in (27) and (28) are equivalent to the complexes defined in Section 3.

5.2. Working definition for n = d. Hypothesis 3.1 is not known for n > 1
in general. However, the cohomology RΓWh(Xs,Z(d)) is expected to consist of
finite abelian groups. Therefore, under the assumption that RΓW (Xs, Ri!Z(d))
is cohomologically bounded, we may redefine arithmetic cohomology with coef-
ficients in Z(d) as follows.

The complex RΓW (X ,Z(d)) is not known to be bounded below. However the
complex

RΓW (X ,Q/Z(d)) ' RΓet(X ,Q/Z(d))

is bounded, hence the cohomology groups H i
W (X ,Z(d)) are Q-vector spaces for

i << 0. In particular, for a < b << 0 the map

τ>aRΓW (X ,Z(d))→ τ>bRΓW (X ,Z(d))

induces an equivalence

(τ>aRΓW (X ,Z(d)))⊗̂Ẑ ∼−→ (τ>bRΓW (X ,Z(d)))⊗̂Ẑ.
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Definition 5.2. Let a << 0. We define

RΓar(X ,Z(d)) := (τ>aRΓW (X ,Z(d)))⊗̂Ẑ.

If RΓW (Xs, Ri!Z(d)) is cohomologically bounded, we define RΓar(XK ,Z(d)) as
the cofiber of the composite map

RΓW (Xs, Ri!Z(d))→ τ>aRΓW (X ,Z(d))→ RΓar(X ,Z(d))

in Db(LCA). Similarly, we define

RΓ̂et(X ,Z(d)) := (τ>aRΓet(X ,Z(d)))⊗̂Ẑ.

If RΓet(Xs, Ri!Z(d)) is cohomologically bounded, we define RΓ̂et(XK ,Z(d)) as
the cofiber of the composite map

RΓet(Xs, Ri!Z(d))→ τ>aRΓet(X ,Z(d))→ RΓ̂et(X ,Z(d))

in Db(LCA).

The proof of Theorem 3.10 gives a cofiber sequence

(29) RΓ(Xs, Ri!Q(d))[−1]→ RΓ̂et(XK ,Z(d))→ RΓar(XK ,Z(d)).

Remark 5.3. Suppose that X satisfies Hypothesis 3.1 and suppose that the
complex RΓWh(Xs,Z(d)) is bounded with finite cohomology groups. Then the
complexes of Definition 5.2 are equivalent to the complexes of Definition 3.5.

5.3. Finite ranks.

Proposition 5.4. Assume resolution of singularities for schemes over κ(s) of
dimension ≤ d− 1. Then RΓWh(Xs,Z) is a perfect complex of abelian groups.

Proof. By [8, Lemma 2.7], and using Wh-cohomology with compact support,
one is reduced to show that RΓWh(Y,Z) is perfect for any smooth projective
scheme Y over κ(s) of dimension ≤ d − 1. By [8, Corollary 5.5], the map
RΓW (Y,Z)→ RΓWh(Y,Z) is an equivalence for smooth projective Y . The fact
that RΓW (Y,Z) is perfect was observed in [16].

�

Proposition 5.5. Suppose that Xs is a normal crossing scheme. Then RΓW (X ∗s ,Z)
is a perfect complex of abelian groups.

Proof. We set Y = Xs. For any 0 ≤ i ≤ d, the scheme Y (i) is smooth proper,
hence RΓW (Y (i),Z) is perfect. It follows that the total complex RΓW (Y ∗,Z) of
the double complex RΓW (Y (∗),Z) is perfect as well. �

Proposition 5.6. (1) Assume that Xs is a strict normal crossing scheme
or assume resolution of singularities for schemes over κ(s) of dimension
≤ d− 1. Then RΓar(X ,Z) and RΓar(XK ,Z) belong to Db(FLCA).

(2) Assume that RΓW (Xs, Ri!Z(d)) is a perfect complex of abelian groups.
Then RΓar(X ,Z(d)) and RΓar(XK ,Z(d)) belong to Db(FLCA).

Proof. Under these hypothesis, the complexesRΓW (X ∗s ,Z) (resp. RΓWh(Xs,Z))
and RΓW (Xs, Ri!Z(d)) are perfect complexes of abelian groups by Proposition
5.5, Proposition 5.4 and by Hypothesis 5.8, hence they belong to Db(FLCA)
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by Lemma 2.2. By the proof of Proposition 6.3, RΓar(X ,Z(d)) is (up to a
shift) dual to RΓet(Xs, Ri!Q/Z). Hence, by Lemma 2.2, it is enough to check
that Hj

et(Xs, Ri!Q/Z) is an abelian group of finite ranks for all j ∈ Z. Since
Hj
et(Xs, Ri!Q/Z) is torsion and discrete, it is both of finite Z-rank and of finite

S1-rank. It remains to see that it is of finite p-rank for any prime number p.
This follows from the fact that Hj

et(Xs, Ri!Z/pZ) is a finite group for any j ∈ Z
by [9, Theorem 7.5]. �

5.4. Locally compact cohomology groups. The following condition is bor-
rowed from [24].

Hypothesis 5.7. The scheme (Xs)red is a strict normal scheme over κ(s) and
X → Spec(OK) = S is log-smooth with respect to the log-structures associated
with (Xs)red and s respectively.

The following hypothesis holds if d ≤ 2. It is conjecturally true in general.

Hypothesis 5.8. The complex RΓW (Xs, Ri!Z(d)) is a perfect complex of abelian
groups.

Theorem 5.9. (1) Suppose that (Xs)red is a strict normal crossing scheme.
Then for any i ∈ Z, the object H i

ar(XK ,Z) ∈ LH(LCA) is a discrete
abelian group. More precisely, Hj

ar(XK ,Z) ∈ LH(LCA) is an extension
of a torsion abelian group by a finitely generated abelian group.

(2) Suppose that X satisfies both Hypothesis 5.7 and Hypothesis 5.8. Then
for any i ∈ Z, the object H i

ar(XK ,Z(d)) is a locally compact abelian
group. More precisely, H i

ar(XK ,Z(d)) is an extension of a finitely gen-
erated abelian group by a finitely generated Zp-module endowed with the
p-adic topology.

Proof. We have a long exact sequence in the abelian category LH(LCA)

Hj
W (Xs, Ri!Z)→ Hj

ar(X ,Z)→ Hj
ar(XK ,Z)→ Hj+1

W (Xs, Ri!Z)→ Hj+1
ar (X ,Z)

where Hj
W (Xs, Ri!Z) ' Hj−1

W (Xs, Ri!Q/Z) is a discrete torsion abelian group
(see the proof of Proposition 6.3) and Hj

ar(X ,Z) ' Hj
W (X ∗s ,Z) is a discrete

finitely generated abelian group by Proposition 5.5. HenceHj
ar(XK ,Z) ∈ LH(LCA)

is an extension of a torsion abelian group by a finitely generated abelian group,
since the subcategory LCA ⊂ LH(LCA) is stable by extensions.

We prove (2). We have a long exact sequence in LH(LCA)

Hj
W (Xs, Ri!Z(d))→ Hj

ar(X ,Z(d))→ Hj
ar(XK ,Z(d))→ Hj+1

W (Xs, Ri!Z(d))

where Hj
W (Xs, Ri!Z(d)) is a discrete finitely generated abelian group by Hy-

pothesis 5.8. Moreover, Hj
ar(X ,Z(d)) ∈ LH(LCA) is the group

Hj
et(X , Ẑ(d)) '

∏
l

Hj
et(X ,Zl(d)) :=

∏
l

Hj(Rlim(RΓet(X ,Z(d))⊗L Z/l•))

where the product is taken over the set of prime numbers l, and the finitely
generated Zl-module Hj

et(X ,Zl(d)) is endowed with the l-adic topology. We
need to show that the image of the map Hj

W (Xs, Ri!Z(d)) → Hj
et(X , Ẑ(d)) is
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finite. It will follow that Hj
ar(XK ,Z(d)) is an extension of a finitely generated

abelian group by a profinite abelian group.
Since the group

Hj
et(X , Ẑ′(d)) '

∏
l 6=p

Hj
et(X ,Zl(d))

is finite for any j ∈ Z by Lemma 5.11, and since we have an isomorphism of
finitely generated Zp-modules

Hj
W (Xs, Ri!Z(d))⊗Z Zp ' Hj

et(Xs, Ri!Zp(d)),

it is enough to show that the image of the map

Hj
et(Xs, Ri!Zp(d))→ Hj

et(X ,Zp(d))

is finite. One is therefore reduced to show that the map

Hj
et(Xs, Ri!Qp(d))→ Hj

et(X ,Qp(d))

is the zero-map, which follows from Theorem 5.10 by the localization sequence.
�

The following result easily follows from Sato’s work [24].

Theorem 5.10. Suppose that X satisfies Hypothesis 5.7. Then for any i ∈ Z,
the map

(30) H i
et(X ,Qp(d))→ H i

et(XK ,Qp(d))

is injective.

Proof. We first observe that we have isomorphisms

(31) H i
et(X ,Qp(d)) ' H i

et(X ,QS
p (d))

compatible with the map (30), where

RΓet(X ,QS
p (d)) := RlimRΓet(X ,Tr(d))⊗Zp Qp

is the complex studied in [24]. Indeed, this follows from the equivalences

RΓ(Xet,Tr(d)) ' RHom(RΓXs(Xet,Z/pr),Z/pr)[−2d− 1](32)
' RΓ(Xet,Z(d)/pr),(33)

given by [23, Thm 10.1.1] and [9, Proof of Thm 7.5], and from the fact that (30)
is induced by the dual of the map

RΓ(XK,et,Z/pr)[−1]→ RΓXs(Xet,Z/pr).
Hence we are reduced to show that the map

H i
et(X ,QS

p (d))→ H i
et(XK ,Qp(d))

is injective. By [24, Prop. 3.4(1)], [24, Section 4.1] and [24, Thm. 5.3], there is
a morphism of spectral sequences from

H i
f (GK , H

j
et(XK̄ ,Q(d)))⇒ H i+j

et (X ,QS
p (d))

to
H i(GK , H

j
et(XK̄ ,Q(d)))⇒ H i+j

et (XK ,Qp(d))
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where the first spectral sequence degenerates into isomorphisms

Hj
et(X ,QS

p (d))
∼→ H1

f (GK , H
j−1
et (XK̄ ,Q(d))).

Since we have [24, Prop. 5.10(1)]

H0
f (GK , H

j
et(XK̄ ,Q(d))) = H0(GK , H

j
et(XK̄ ,Q(d))) = 0

for any j ∈ Z, we obtain a commutative square

Hj
et(X ,QS

p (d)) //

'
��

Hj
et(XK ,Qp(d))

��

H1
f (GK , H

j−1
et (XK̄ ,Q(d))) // H1(GK , H

j−1
et (XK̄ ,Q(d)))

where the vertical maps are edge morphisms of the corresponding spectral se-
quences. Here the left vertical map is an isomorphism and the lower horizontal
map is injective. It follows that the upper horizontal map is injective as well. �

Lemma 5.11. Suppose that X satisfies Hypothesis 5.7. Then the group

H i
et(X , Ẑ′(d)) := H i(Rlimp-mRΓet(X ,Z(d))⊗L Z/m)

is finite for any i ∈ Z.

Proof. We set Z/m(d) := Z(d)⊗LZ/m. By duality and proper base change, we
have

RΓet(X ,Z/m(d)) ' RHom(RΓXs(Xet,Z/m),Z/pr)[−2d− 1](34)
' RΓet(X , µ⊗dm )(35)
' RΓet(Xs, µ⊗dm )(36)

for any m prime to p. Moreover, we have

RΓet(Xs, µ⊗dm ) ' RΓeh(Xs, µ⊗dm ) ' RΓeh(X ∗s , µ⊗dm ) ' RΓet(X ∗s , µ⊗dm )

by [8, Theorem 3.6] and the argument of Proposition 4.2(a). Hence we have

RΓet(X , Ẑ′(d)) ' Rlimp-mRΓet(X ∗s , µ⊗dm )

It remains to check that the cohomology of the right hand side is finite. For
any i, we have RΓet(X (i)

s ,Ql(d)) ' 0 by a weight argument. Hence the result
follows from the fact [5] that the cohomology of RΓet(X (i)

s ,Zl(d)) is finite for all
l 6= p and zero for almost all l. Note that X (i)

s is smooth. �

6. Duality theorems

From now on, we use the notations and definitions introduced in Section 5.
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6.1. Duality with Z-coefficients.

Theorem 6.1. Assume either d ≤ 2 or that (Xs)red is a strict normal crossing
scheme satisfying Hypothesis 5.8. Then there is a perfect pairing

RΓar(XK ,Z(d))⊗LRΓar(XK ,Z) −→ Z[−2d]

in Db(FLCA).

The hypotheses of the theorem are assumed throughout its proof.

Proof. Recall from Proposition 5.6 that RΓar(XK ,Z(n)) belongs to Db(FLCA)
for n = 0, d, so that the tensor product

RΓar(XK ,Z(d))⊗LRΓar(XK ,Z)

defined in Section 2, makes sense. Moreover, the equivalence [9]

Ri!Zc(0)X ' Zc(0)Xs

and the push-forward map

Rf∗Zc(0)Xs → Zc(0)s ' Z[0]

give trace maps

RΓW (Xs, Ri!Z(d)) ' RΓW (Xs,Zc[−2d])→ RΓW (s,Z[−2d])→ Z[−2d− 1]

and
RΓet(Xs, Ri!Z/m(d))→ RΓet(s,Z/m[−2d])→ Z/m[−2d− 1].

We start with the following

Proposition 6.2. The obvious product maps Z⊗L Z(d)→ Z(d), in the derived
∞-category of étale sheaves over XOKun and XKun induce perfect pairings

RΓet(Xs, Ri!Z/m)⊗LRΓet(X ,Z/m(d))→ RΓet(Xs, Ri!Z/m(d))→ Z/m[−2d−1]

and

RΓet(Xs, Ri!Z/m(d))⊗LRΓet(X ,Z/m)→ RΓet(Xs, Ri!Z/m(d))→ Z/m[−2d−1]

for any m.

Proof. Consider the obvious product map Z⊗L Z(d− n)→ Z(d) in the derived
∞-category of étale sheaves over X and X . We have a commutative square

RΓet(X ,Z)⊗L RΓet(X ,Z(d))

��

// RΓet(X ,Z(d))

��
RΓet(XK ,Z)⊗L RΓet(X ,Z(d)) // RΓet(XK ,Z(d))

Taking the fibers of the vertical arrows gives the product map

(37) RΓet(Xs, Ri!Z)⊗L RΓet(X ,Z(d))→ RΓet(Xs, Ri!Z(d)).

The product map

(38) RΓet(Xs, Ri!Z(d))⊗L RΓet(X ,Z)→ RΓet(Xs, Ri!Z(d))

is obtained similarly.
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By [9, Theorem 7.5], the pairing

RΓet(Xs, Ri!Z/m)⊗LRΓet(X ,Z/m(d))→ RΓet(Xs, Ri!Z/m(d))→ Z/m[−2d−1],

induced by (37), is perfect. The pairing induced by (38)

RΓet(Xs, Ri!Z/m(d))⊗LRΓet(X ,Z/m)→ RΓet(Xs, Ri!Z/m(d))→ Z/m[−2d−1]

is perfect as well, since it reduces, by purity and proper base change, to

RΓet(Xs,Zc/m[−2d])⊗LRΓet(Xs,Z/m)→ RΓet(Xs,Zc/m[−2d])→ Z/m[−2d−1]

which is perfect by [9]. �

For n = 0 or n = d, consider the product map

RΓet(Xs̄, Rī!Z(n))⊗L RΓet(XOKun ,Z(d− n))→ RΓet(Xs̄, Rī!Z(d)).

This product map is induced by the obvious product maps Z⊗LZ(d)→ Z(d) in
the derived ∞-category of étale sheaves over XOKun and XKun , as in the proof
of Proposition 6.2. Applying RΓ(Wκ(s),−) and composing with the trace map,
we obtain

RΓW (Xs, Ri!Z(n))⊗L RΓW (X ,Z(d− n))→ RΓW (Xs, Ri!Z(d))→ Z[−2d− 1].

This yields the morphisms

RΓW (X ,Z(d))→ RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

which in turn induces

(39) τ>aRΓW (X ,Z(d))→ RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

for a << 0, since the right hand side is bounded. Similarly, we obtain

(40) RΓW (X , Ri!Z(d))→ RHom(RΓW (X ,Z),Z[−2d− 1]).

Composing (39) with the canonical map (see Lemma 2.6)

RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])→ RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

we obtain

(41) τ>aRΓW (X ,Z(d))→ RHom(RΓW (Xs, Ri!Z),Z[−2d− 1]).

Proposition 6.3. The map (41) factors through an equivalence

(42) RΓar(X ,Z(d))
∼→ RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

in Db(FLCA).
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Proof. One has

RΓar(X ,Z(d)) := τ>aRΓW (X ,Z(d))⊗̂Ẑ
' (hocolimRHom(RΓW (X ,Z/m(d)),Q/Z))D

' (hocolimRHom(RΓet(X ,Z/m(d)),Q/Z))D

' RHom(hocolimRHom(RΓet(X ,Z/m(d)),Q/Z[−2d− 1]),R/Z[−2d− 1])
∼→ RHom(hocolimRΓet(Xs, Ri!Z/m),R/Z[−2d− 1])

' RHom(RΓW (Xs, Ri!Q/Z),R/Z[−2d− 1])

' RHom(RΓW (Xs, Ri!Z[1]),R/Z[−2d− 1])

' RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

where we use Proposition 6.2, the vanishing

(43) RHom(RΓW (Xs, Ri!Z[1]),R) ' 0.

proven in Lemma 6.4 below and Ri!Q ' 0. This last observation follows from
the fact Q → Rj∗j

∗Q is an equivalence because X is normal. Hence the map
(41) factors through an equivalence

RΓar(X ,Z(d))
∼→ RHom(RΓW (Xs, Ri!Z),Z[−2d− 1]).

�

Lemma 6.4. We have

RHom(RΓW (Xs, Ri!Z[1]),R) ' RHom(R, RΓW (Xs, Ri!Z[1])) ' 0.

Proof. We first prove the first assertion. As observed above, we haveRΓW (Xs, Ri!Z[1]) '
RΓW (Xs, Ri!Q/Z). Since RHom(R,−) and RHom(−,R) are exact functors, and
using the t-structure on Db(FLCA), we may suppose that RΓW (Xs, Ri!Q/Z) is
cohomologically concentrated in one degree. Hence one is reduced to show that

RHom(A,R) ' RHom(R, A) ' 0

for any torsion discrete abelian group of finite ranks A. This follows from [13]
Proposition 4.15. �

Corollary 6.5. We have

RHom(RΓar(X ,Z(d)),R) ' RHom(R, RΓar(X ,Z(d))) ' 0.

Proof. In the proof of Proposition 6.3, we have shown that RΓar(X ,Z(d)) is,
up to a shift, Pontryagin dual to RΓW (Xs, Ri!Z[1]). Hence the corollary follows
from Lemma 6.4 since we have RHom(X,Y ) ' RHom(Y D, XD) for any X,Y ∈
Db(FLCA). �

Similarly, we have the

Proposition 6.6. The map

(44) RΓW (Xs, Ri!Z(d))→ RHom(RΓW (X ,Z),Z[−2d− 1])

factors through an equivalence

(45) RΓW (Xs, Ri!Z(d))
∼−→ RHom(RΓar(X ,Z),Z[−2d− 1]).
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Proof. Over X , one has Zc(0) = Z(d)[2d]. Moreover, one has

Ri!Zc(0) ' Zc(0)

hence
Ri!Z(d) = Ri!Zc(0)[−2d] ' Zc(0)[−2d].

If Xs is a strict normal crossing scheme, we may therefore identify the map

(46) RΓW (Xs, Ri!Z(d))[2d]
∼−→ RHom(RΓar(X ,Z),Z[−2d− 1])[2d]

with the composite morphism

RΓW (Xs,Zc(0))
∼→ RHom(RΓW (X ∗s ,Z),Z[−1])

∼→ RHom(RΓW (X ∗s ,Z),Z[−1])

which is an equivalence of perfect complexes of abelian groups by Hypothesis
5.8, Proposition 5.5 and Theorem 4.6. If d ≤ 2, we may identify (46) with the
morphism

RΓW (Xs,Zc(0))
∼→ RHom(RΓWh(Xs,Z),Z[−1])

∼→ RHom(RΓWh(Xs,Z),Z[−1])

which is an equivalence of perfect complexes of abelian groups by Proposition
5.4 and [12]. �

We are now combining Proposition 6.3 and Proposition 6.6 to prove our result
for the generic fiber.

Proposition 6.7. There is an equivalence

RΓar(XK ,Z(d))
∼→ RHom(RΓar(XK ,Z),Z[−2d])

such that, for any m, there is a commutative square

RΓar(XK ,Z(d))
∼ //

��

RHom(RΓar(XK ,Z),Z[−2d])

��
RΓet(XK ,Z/m(d))

∼ // RHom(RΓet(XK ,Z/m),Q/Z[−2d])

where the lower horizontal map is induced by duality for usual étale cohomology
of the variety XK .

Proof. We start with the commutative diagram:

RΓet(Xs̄, Rī!Z)⊗L RΓet(XOKun ,Z(d))

++
RΓet(Xs̄, Rī!Z)⊗L RΓet(Xs̄, Rī!Z(d)) //

OO

��

RΓet(Xs̄, Rī!Z(d))

RΓet(XOKun ,Z)⊗L RΓet(Xs̄, Rī!Z(d))

33

where the map

RΓet(Xs̄, Rī!Z)⊗L RΓet(Xs̄, Rī!Z(d))→ RΓet(Xs̄, Rī!Z(d))

is induced by the map Z⊗L Z(d) → Z(d) over XOKun as follows. Consider the
morphism

ī∗Rī
!Z→ Z→ RHom(Z(d),Z(d))
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→ RHom(̄i∗Rī
!Z(d),Z(d)) ' ī∗RHom(Rī!Z(d), Rī!Z(d))

and apply ī∗ (here Hom denotes the internal Hom in the corresponding category
of étale sheaves). Applying RΓ(Wκ(s),−) to the diagram above, we obtain the
following commutative diagram in D(Ab):

RΓW (Xs, Ri!Z)⊗L RΓW (X ,Z(d))

++
RΓW (Xs, Ri!Z)⊗L RΓW (Xs, Ri!Z(d)) //

OO

��

RΓW (Xs, Ri!Z(d))

RΓW (X ,Z)⊗L RΓW (Xs, Ri!Z(d))

33

Composing with the trace map RΓW (Xs, Ri!Z(d))→ Z[−2d− 1], we obtain the
commutative diagram in D(Ab):

RΓW (Xs, Ri!Z)⊗L RΓW (X ,Z(d))

**
RΓW (Xs, Ri!Z)⊗L RΓW (Xs, Ri!Z(d)) //

OO

��

Z[−2d− 1]

RΓW (X ,Z)⊗L RΓW (Xs, Ri!Z(d))

44

It gives the following commutative diagram in D(Ab)

RΓW (Xs, Ri!Z(d)) //

��

RHom(RΓW (X ,Z),Z[−2d− 1])

��
RΓW (X ,Z(d)) //

��

RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

τ>aRΓW (X ,Z(d))

33

We obtain the following commutative diagram

RΓW (Xs, Ri!Z(d)) //

��

RHom(RΓW (X ,Z),Z[−2d− 1])

��
τ>aRΓW (X ,Z(d)) // RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

��
RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

in the derived ∞-category Db(LCA), where the lower right map is given by
Lemma 2.6. By construction of the maps (42) and (45), we obtain the following
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commutative diagram

RHom(RΓar(X ,Z),Z[−2d− 1])

��
RΓW (Xs, Ri!Z(d)) //

��

(45)
33

RHom(RΓW (X ,Z),Z[−2d− 1])

��
τ>aRΓW (X ,Z(d))

��

// RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

RΓar(X ,Z(d))

(42)

33

hence a commutative square

RΓW (Xs, Ri!Z(d))
(45) //

��

RHom(RΓar(X ,Z),Z[−2d− 1])

��
RΓar(X ,Z(d))

(42) // RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

We obtain an equivalence of cofiber sequences in Db(LCA):

RΓW (Xs, Ri!Z(d))
∼ //

��

RHom(RΓar(X ,Z),Z[−2d− 1])

��
RΓar(X ,Z(d))

��

∼ // RHom(RΓW (Xs, Ri!Z),Z[−2d− 1])

��
RΓar(XK ,Z(d))

∼ // RHom(RΓar(XK ,Z),Z[−2d])

Tensoring the upper commutative square with Z/m gives a square equivalent to
the commutative square

RΓet(Xs, Ri!Z/m(d)) //

��

RHom(RΓet(X ,Z/m),Q/Z[−2d− 1])

��
RΓet(X ,Z/m(d)) // RHom(RΓet(Xs, Ri!Z/m),Q/Z[−2d− 1])

where the horizontal maps are induced by the perfect pairings of Proposition
6.2. This yields the commutative square of Proposition 6.7. �

It remains to prove that

RΓar(XK ,Z)
∼→ RHom(RΓar(XK ,Z(d)),Z[−2d])

is an equivalence as well.

Lemma 6.8. The map

RΓar(XK ,Z)→ RHom(RHom(RΓar(XK ,Z),Z),Z)

is an equivalence.
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Proof. We have

RΓar(X ,Z) ' RHom(RHom(RΓar(X ,Z),Z),Z)

by Lemma 2.6, since RΓar(X ,Z) is a perfect complex of abelian groups by
Proposition 5.5 and Proposition 5.4. In view of the cofiber sequence

RΓW (Xs, Ri!Z)→ RΓar(X ,Z)→ RΓar(XK ,Z)

one is reduced to check that the map

RΓW (Xs, Ri!Z)→ RHom(RHom(RΓW (Xs, Ri!Z),Z),Z)

is an equivalence. Recall from the proof of Proposition 6.3 that we have

RHom(RHom(RΓW (Xs, Ri!Z),Z),Z)

' RHom(RΓar(X ,Z(d))[2d+ 1],Z)

' RHom(RΓar(X ,Z(d))[2d+ 1],R/Z[−1])

' RΓar(X ,Z(d))D[−2d− 2]

' (hocolimRHom(RΓW (X ,Z/m(d)),Q/Z))DD[−2d− 2]

' hocolimRHom(RΓW (X ,Z/m(d)),Q/Z[−2d− 1])[−1]

' RΓW (Xs, Ri!Q/Z)[−1]

' RΓW (Xs, Ri!Z).

where the second equivalence follows from Corollary 6.5. �

Consider the pairing

(47) RΓar(XK ,Z(d))⊗LRΓar(XK ,Z) −→ Z[−2d]

induced by the equivalence of Proposition 6.7. Hence the induced map

(48) RΓar(XK ,Z(d))
∼→ RHom(RΓar(XK ,Z),Z[−2d])

is (tautologically) the equivalence of Proposition 6.7. Moreover, the map

(49) RΓar(XK ,Z)
∼→ RHom(RΓar(XK ,Z(d)),Z[−2d])

induced by (47) is an equivalence as well. Indeed, applying RHom(−,Z[−2d])
to (48) and using Lemma 6.8, we obtain the composite equivalence

RΓar(XK ,Z)
∼→ RHom(RHom(RΓar(XK ,Z),Z[−2d]),Z[−2d])

∼→ RHom(RΓar(XK ,Z(d)),Z[−2d])

which is, up to equivalence, the map (49). �

6.2. Pontryagin duality. Recall that we denote by FLCA the category of
locally compact abelian group of finite ranks in the sense of [13]. It follows from
Proposition 5.6 that the following definition makes sense.

Definition 6.9. Assume either d ≤ 2 or that (Xs)red is a strict normal crossing
scheme satisfying Hypothesis 5.8. For any A ∈ FLCA and n = 0, d, we define

RΓar(XK , A(n)) := RΓar(XK ,Z(n))⊗LA;

RΓar(X , A(n)) := RΓar(X ,Z(n))⊗LA.
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Corollary 6.10. Assume either d ≤ 2 or that (Xs)red is a strict normal crossing
scheme satisfying Hypothesis 5.8. Then one has equivalences

RΓar(XK ,R/Z)
∼−→ RHom(RΓar(XK ,Z(d)),R/Z[−2d])

and
RΓar(XK ,Z)

∼−→ RHom(RΓar(XK ,R/Z(d)),R/Z[−2d])

in Db(FLCA).

Proof. By Theorem 6.1, we have

RΓar(XK ,Z(d))
∼→ RHom(RΓar(XK ,Z),Z[−2d])
∼→ RHom(RΓar(XK ,Z), RHom(R/Z,R/Z[−2d])

' RHom(RΓar(XK ,Z)⊗LR/Z,R/Z[−2d])

:= RHom(RΓar(XK ,R/Z),R/Z[−2d]).

Applying the functor RHom(−,R/Z[−2d]) and using Pontryagin duality, we
obtain the first equivalence of the Corollary.

Similarly, we have

RΓar(XK ,Z)
∼→ RHom(RΓar(XK ,Z(d)),Z[−2d])

' RHom(RΓar(XK ,Z(d))⊗LR/Z,R/Z[−2d])

:= RHom(RΓar(XK ,R/Z(d)),R/Z[−2d]).

�

Corollary 6.11. Assume that X satisfies Hypothesis 5.8 and Hypothesis 5.7.
Then for any i ∈ Z, we have an isomorphism of locally compact groups

H i
ar(XK ,R/Z)

∼−→ H2d−i
ar (XK ,Z(d))D

and an isomorphism of discrete groups

H i
ar(XK ,Z)

∼−→ H2d−i
ar (XK ,R/Z(d))D.

Proof. In view of Lemma 5.9, the equivalence in Db(FLCA)

RΓar(XK ,R/Z)
∼−→ RΓ(XK ,Z(d))D[−2d]

induces isomorphisms

H i
ar(XK ,R/Z)

∼−→ H i(RΓ(XK ,Z(d))D[−2d]) ' H2d−i
ar (XK ,Z(d))D

of locally compact abelian groups. Similarly, the equivalence in Db(FLCA)

RΓar(XK ,R/Z(d))
∼−→ RΓ(XK ,Z)D[−2d]

induces isomorphisms

H i
ar(XK ,R/Z(d))

∼−→ H i(RΓ(XK ,Z)D[−2d]) ' H2d−i
ar (XK ,Z)D

of compact abelian groups.
�
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Remark 6.12. It can be shown that the map H i
ar(XK ,Z(d)) → H i

et(XK , Ẑ(d))
induces an isomorphism

H i
ar(XK ,Z(d))̂ → H i

et(XK , Ẑ(d))

and that the canonical map

H i
et(XK ,Q/Z)→ H i

ar(XK ,R/Z)

is injective with dense image. Finally, the square

H i
et(XK ,Q/Z) //

��

Hom(H2d−i
et (XK , Ẑ(d)),Q/Z)

��
H i
ar(XK ,R/Z) // Hom(H2d−i

ar (XK ,Z(d)),R/Z)

commutes. It follows that the lower horizontal map is uniquely determined by
the upper horizontal map by continuity.
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