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Number Fields and Function Fields

Z “ Fq[T]
Number Fields Function Fields/Curves
primes places/points
log |disc| < genus
class group Jacobian

Zeta function: RH holds for congruence function fields!



Curves over Finite Fields

Let C be smooth, projective, absolutely irreducible curve over .

(alternatively F/Fq an algebraic function field with full constant
field Fy)

C(Fq) set of rational points of C.
#C(Fy) is finite

#C(Fq) =7
Notation: N = Ny := #C(Fy).



The Hermitian Curve

go a prime power, q = qg.

X+l L yat+l | 70+l _ o

Smooth plane of degree qo + 1, genus g = %QO(qo —1).

N = qg + 1:
Involution of the quadratic extension Fy/Fg, given by

X = X = xP

Count isotropic vectors of the Hermitian form xX + yy + zZ.



Alternatively, use the (affine) model
yo 4y = xGo+1

Trace and Norm Fg/Fg,.

e Each of the qg values for x in Fq gives gg values for y.
— q(3) points
e One point at infinity

So N =gqd+1.

g=30(do—1),N=q3 +1. SoN~2q-g=2,q¢.
(in fact N =q+1+42,/qg)



Zeta Function

C/Fq, N, :=#C(Fy)

r

oo
Zc = exp (Z N,T).

r=1



Weil Conjectures

Rationality
Ze(T) € Q(T).
In fact (T
#0 =G —q7)

where L(T) € Z[T],deg L(T) = 2g.
Writing L(T) = ap + a1 T + - - - + a5 T2, we have

aozl,alzN—(q—i-l).

Functional Equation

1
Zo(T) = q8 1 T26727,(—
c(T)=q c(qT)



Weil Conjectures

¢ Riemann Hypothesis

L(T)

D= ary

deg L(T)=12g, L(0)=1

2g

L(T)=]]@-aT).

i=1
RH : |oj| = /q (Hasse-Weil).
Define (¢(s) = Zc(¢™*). Then

Ge(s) =0=Ze(q™*) =0=[q°| = g /> = Re(s) = 1/2.



Bounds on the number of points

2g
N=qg+l+a=qg+1-) q
i=1
so
N<qg+1+2g,/q (Hasse-Weil bound).

Similarly, considering C/F -

2g
Ny=q +1-) of
i=1



Example
C/F3 genus 4 hyperelliptic curve given by the (affine) equation
yi=x-(x+1)-(x"+x*-1).

81T 27T  +18T°+6T° —2T*+2T3+2T2 - T +1

Z = (1-T)1-3T)

™
/

Inverse roots have norm v/3




How good is the Hasse-Weil bound?



Hermitian Curve

go a prime power, g = qg.

X 9o+l + y do+1 + Zo+1 0

g=13%q0(qo—1),N=¢q3 +1.
SoN=gqg+1+2,/qg.

The Hermitian Curve attains the Hasse—Weil bound. Such curves
are called maximal.



lhara Bound

N—q+1—Z, 1041,\O<i|=\/6

C is maximal (attains HW-bound) < o; = — /g fori=1,...,2g

We have N, =q" + 1 — Z, Lof

many few

. “ . TN .
Fq-rational | — @i negative’ — aj "positive’ — IF j2-rational

points points




lhara Bound

Say C/F, is a maximal curve. So aj = —,/q.

C(Fq2) > C(Fq)
2g 2g
F+1-> g=q+1+) g
i=1 i=1

or

g< %(q*\fq)-

Hasse—Weil bound cannot be attained for large g.
“ar; cannot all be to the left”

(note: (g — \/q) is the genus of the Hermitian curve)



lhara's constant

lhara:

. #C(Fy)
A =
(@) gl(?)ijoz g(C)

C runs over all absolutely irreducible, smooth, projective curves
over [F.

Hasse-Weil bound — A(q) <2,/q
Ihara = A(q) 1

Drinfeld—Vladut = A(q)
(C(Fq’) 2 C(Fq))
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mf
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How to obtain lower bounds for A(q)?

Find sequences C;/FF, such that g(C;) — oo and

. #CI(Fq)
ol g(Ci)

is large.

Many ways to construct good sequences:

e Modular curves (Elliptic, Shimura, Drinfeld)
e Class field towers (over prime fields)

e Explicit equations (recursively defined)



Modular curves

Ihara (1981), Tsfasman—Vladut-Zink:
Suppose g = qg is a square. Then

A@) > a—1 (0 Ag) =g 1),

(case go = p) Choose prime ¢ # p, with £ = 11 (mod 12).
Consider the modular curve X = Xo(¢) over Fp,.

Curve of genus (¢ +1)/12.



Points on Xy(¢)

Points: {0,000} “cusps”, and points corresponding to pairs (E, C),
E elliptic curve, C subgroup of E of order /.

Supersingular elliptic curves and their £ + 1 subgroups can be
defined over I ..
We get many F»-rational supersingular points:

p—1

Fo=(e+1).

So




Zink Bound

Zink (Degeneration of Shimura surfaces):
If g = p3, p a prime number, then
2 1)

2(p
A(p3) > 22—~/
(p7) > b2

(generalized by Bezerra—Garcia—Stichtenoth to all cubic finite
fields)



Class Field Towers

C/Fq, with function field F.
S non-empty set of rational places of F.
Define sequence (Fp, Sp) inductively:

* (Fo, %) = (F,5)

e f,+1 is the maximal abelian unramified ¢-extension of Fp, in
which the elements of S, split completely,

e S,11 is the set of places of F, 1 above S,.

These defines curves over IFy,.

(S, ¢)-class field tower of F.



If the (S, ¢)-class field tower of F is infinite, then

#S
Alq) 2 2O -1

Golod-Shafarevich

e Serre: There exists ¢ > 0s.t. A(q) > clog(g) > 0 for every q.

e Various results for small g:
(Serre, Schoof, Niederreiter, Xing, Yeo, Temkine, Kuhnt,
Duursma, Mak,...)
A(2) > 0.3169..., A(3) > 0.49287..., etc.



Recursive towers

Feng, Pellikaan, Garcia, Stichtenoth,...

Fix F(U, V) € Fq4[U, V]. Recursive tower defined by F(U, V):



Recursive towers

Feng, Pellikaan, Garcia, Stichtenoth,...

Fix F(U, V) € Fq[U, V]. Recursive tower defined by F(U, V):

5T 2

Co = {(a1,a2)|F(a1,a2) = 0} C Ty



Recursive towers
Feng, Pellikaan, Garcia, Stichtenoth,...

Fix F(U, V) € Fq4[U, V]. Recursive tower defined by F(U, V):

G ={(a1, a2, a3)|F(a1,a2) =0, F(az,a3) =0} C Fq3

|

Co = {(a1, a2)|F (a1, a2) = 0} C F,°



Recursive towers

Feng, Pellikaan, Garcia, Stichtenoth,...

Fix F(U, V) € F4[U, V]. Recursive tower defined by F(U, V):

Cs = {(a1, a2, a3,a4)|F (a1, a2) = F(az,a3) = F(a3,as) =0} C IF_q4

|

G ={(a1, a2, a3)|F(a1,a2) =0, F(ap,a3) =0} C Iy

|

Co = {(a1,a2)|F(a1,a2) = 0} C Ty



Let C, be a smooth projective model corresponding to C,.

Find suitable F(U, V) such that
o Co/F, are irreducible
. #En(Fq) grows fast

e g(Cp) grows slowly.



Norm-Trace Tower

Garcia—Stichtenoth, 1996

q="0

U€+1
Ut+u
Attains the Drinfeld—Vladut bound.

Genus computation is difficult (wild ramification)
Why many rational points?

VitV =



XZ
ntX

g=
— /2

{41

X 1+
-1
Xn
e




q=1
g il
X4 Xy = ————,

U€+1

Vit v =
TV =i u
. €+1 ; leJrl
XX Xi4- X, =
3= Xf X TR T XX

X1 =a €Fgst Tqu/Fe(al) #0

(¢? — 1 choices)



q=1
g il
X4 Xy = ————,

U€+1

Vit v =
TV =i u
. £+1 ; leJrl
XX Xi4- X, =
3= Xf X TR T XX

X1 =a €Fgst Tqu/Fe(al) #0

Xo = ap with ag—i—azz Kl
a; + a1

(¢? — 1 choices)

/41
€ Fg\{O}

1

¢ choices with ax € Fq, Trp, /r,(a2) # 0)



q=1
g il
X4 Xy = ————,

U€+1

Vit v =
TV =i u
. £+1 ; leJrl
XX Xi4- X, =
3= Xf X TR T XX

X1 =a €Fgst Tqu/Fe(al) #0
(¢? — 1 choices)

(+1

Xo = ap with ag—i—azz Kl

¢ choices with ax € Fq, Trp, /r,(a2) # 0)

€ Fg\{O}

/41
. a
X3 = a3z with ag—kag: 62

¢ choices with a3 € Fq, Trg, /r,(a3) # 0)

€ F,\{0}




q=1
g il
X4 Xy = ————,

U€+1

Vit v =
TV =i u
. £+1 ; leJrl
XX Xi4- X, =
3= Xf X TR T XX

X1 =a €Fgst Tqu/Fe(al) #0
(¢? — 1 choices)

(+1

Xo = ap with ag—i—azz Kl

¢ choices with ax € Fq, Trp, /r,(a2) # 0)

€ Fg\{O}

¢ 35“
X3 = a3 with a3 + a3 = € Fo\{0
3= a3 R . \{0}
¢ choices with a3 € Fq, Trg, /r,(a3) # 0)

...... so #Cn(]Fq) > (62 o g)gn—l



Towers over cubic finite fields

e van der Geer-van der Vlugt, q=23=8,%/F,
VP4V =U+1+1/U

A = 3/2. Attains Zink's bound for p = 2.
o Bezerra—Garcia-Stichtenoth, q = (3, F3/F,
1-V _ U'+U+1
Ve U
Generalizes Zink's bound.
o B.—Garcia-Stichtenoth, q = (3, F4/F,

2(0%2 — 1)
NFs) = =5

— -y 2(2 —1)

4 -1 —
(V' =Wl = gy



Towers over all non-prime fields
B.—Beelen—Garcia—Stichtenoth

q=10"n>2k=|n/2]:

Notation: Tr,(t) = t + ¢/ + - + ¢

Tr(V) — 1 (Tn(U) — 1)

(Trera (V) — 1) (Trega(U) — 1)

Lower bound:

e neven: ,/q — 1 — Drinfeld-Vladut bound

e n=23: 2(51_21) — Zink's bound

e Forn=2k+1>3

2
1 1

i 1> ALY > ) >
FoaTE



Modular Interpretation

Idea: for classical modular curves many rational points over I
come from the supersingular points.

Why quadratic? Over C, elliptic curves <> rank 2 lattices.
[C : R] =2, no higher rank possible.



Drinfeld Modular Varieties

Co
C koo
R Koo
Q Fe(T)
Z F,[T]
Z-lattices inside C — rank 1 or 2

Fy[T]-lattices inside C,  — arbitrary high rank possible



Drinfeld modules

Lattices <+ Drinfeld modules

Supersingular Drinfeld modules of rank r and their isogenies can be
defined over a degree r extension— [Fgr-rational points.

Moduli space is (r — 1)-dimensional. Find suitable curves passing
through the supersingular points.



Almost all known recursive towers with good asymptotic behavior
have a modular interpretation.

Elkies “Fantasia”: All “optimal” recursive towers are modular!

Towers over prime fields?



Towers over prime fields

B.—Ritzenthaler
Assume q > 3. There is an explicit recursive tower (C,),>o over Fq
with limit

Equations can be given explicitly (depend on q).

yCH-l +b B 2b(xq+1 —|—n)

yi—y  (b+n)(x9—x)’

where —n, —b € [}/ are non-squares with n # +b.

Related to Singer subgroups of Auty, (P!) ~ PGLy(Fg).



