Rational points on curves over finite fields and their asymptotic

Alp Bassa

Boğaziçi University, İstanbul

Number Fields and Function Fields

Zeta function: RH holds for congruence function fields!

Curves over Finite Fields

Let $\mathcal C$ be smooth, projective, absolutely irreducible curve over $\mathbb F_q$. (alternatively $F/\mathbb F_q$ an algebraic function field with full constant field $\mathbb F_q$)

 $\mathcal{C}(\mathbb{F}_q)$ set of rational points of \mathcal{C} .

$$\#\mathcal{C}(\mathbb{F}_q)$$
 is finite $\#\mathcal{C}(\mathbb{F}_q) = ?$

Notation: $N = N_1 := \#\mathcal{C}(\mathbb{F}_q)$.

The Hermitian Curve

 q_0 a prime power, $q = q_0^2$.

$$X^{q_0+1} + Y^{q_0+1} + Z^{q_0+1} = 0$$

Smooth plane of degree q_0+1 , genus $g=\frac{1}{2}q_0(q_0-1)$.

 $N = q_0^3 + 1$:

Involution of the quadratic extension $\mathbb{F}_q/\mathbb{F}_{q_0}$ given by

$$x \mapsto \bar{x} = x^{q_0}$$

Count isotropic vectors of the Hermitian form $x\bar{x} + y\bar{y} + z\bar{z}$.

Alternatively, use the (affine) model

$$y^{q_0} + y = x^{q_0 + 1}$$

Trace and Norm $\mathbb{F}_q/\mathbb{F}_{q_0}$.

- Each of the q_0^2 values for x in \mathbb{F}_q gives q_0 values for y. $\to q_0^3$ points
- One point at infinity

So
$$N = q_0^3 + 1$$
.

$$g=rac{1}{2}q_0(q_0-1),$$
 $N=q_0^3+1.$ So $Npprox 2q_0\cdot g=2\sqrt{q}\cdot g.$ (in fact $N=q+1+2\sqrt{q}g$)

Zeta Function

$$\mathcal{C}/\mathbb{F}_q$$
, $N_r := \#\mathcal{C}(\mathbb{F}_{q^r})$

$$Z_{\mathcal{C}} := \exp\Bigl(\sum_{r=1}^{\infty} N_r \frac{T^r}{r}\Bigr).$$

Weil Conjectures

Rationality

$$Z_{\mathcal{C}}(T) \in \mathbb{Q}(T)$$
.

In fact

$$Z_{\mathcal{C}}(T) = \frac{L(T)}{(1-T)(1-qT)},$$

where $L(T) \in \mathbb{Z}[T]$, deg L(T) = 2g. Writing $L(T) = a_0 + a_1 T + \cdots + a_{2g} T^{2g}$, we have

$$a_0 = 1, a_1 = N - (q + 1).$$

Functional Equation

$$Z_{\mathcal{C}}(T) = q^{g-1}T^{2g-2}Z_{\mathcal{C}}(\frac{1}{qT})$$

Weil Conjectures

Riemann Hypothesis

$$Z_{\mathcal{C}}(T) = \frac{L(T)}{(1-T)(1-qT)}, \ \deg L(T) = 2g, \ L(0) = 1$$

$$L(T) = \prod_{i=1}^{2g} (1-\alpha_i T).$$

RH:
$$|\alpha_i| = \sqrt{q}$$
 (Hasse-Weil).

Define $\zeta_{\mathcal{C}}(s) = Z_{\mathcal{C}}(q^{-s})$. Then

$$\zeta_{\mathcal{C}}(s) = 0 \Rightarrow Z_{\mathcal{C}}(q^{-s}) = 0 \Rightarrow |q^{-s}| = q^{-1/2} \Rightarrow \operatorname{Re}(s) = 1/2.$$

Bounds on the number of points

$$N = q + 1 + a_1 = q + 1 - \sum_{i=1}^{2g} \alpha_i$$

SO

$$N \le q+1+2g\sqrt{q}$$
 (Hasse–Weil bound).

Similarly, considering $\mathcal{C}/\mathbb{F}_{q^r}$

$$N_r = q^r + 1 - \sum_{i=1}^{2g} \alpha_i^r$$

Example

 \mathcal{C}/\mathbb{F}_3 genus 4 hyperelliptic curve given by the (affine) equation

$$y^2 = x \cdot (x+1) \cdot (x^7 + x^2 - 1).$$

$$Z_{\mathcal{C}} = \frac{81T^8 - 27T^7 + 18T^6 + 6T^5 - 2T^4 + 2T^3 + 2T^2 - T + 1}{(1 - T)(1 - 3T)}.$$

Inverse roots have norm $\sqrt{3}$

How good is the Hasse–Weil bound?

Hermitian Curve

 q_0 a prime power, $q=q_0^2$.

$$X^{q_0+1} + Y^{q_0+1} + Z^{q_0+1} = 0$$

$$g = \frac{1}{2}q_0(q_0 - 1), N = q_0^3 + 1.$$

So $N = q + 1 + 2\sqrt{q}g$.

The Hermitian Curve attains the Hasse–Weil bound. Such curves are called *maximal*.

Ihara Bound

$$N = q + 1 - \sum_{i=1}^{2g} \alpha_i$$
, $|\alpha_i| = \sqrt{q}$

 ${\cal C}$ is maximal (attains HW-bound) $\Leftrightarrow lpha_i = -\sqrt{q}$ for $i=1,\ldots,2g$

We have
$$N_r = q^r + 1 - \sum_{i=1}^{2g} \alpha_i^r$$

$$\boxed{\begin{array}{c} \text{many} \\ \mathbb{F}_{q}\text{-rational} \\ \text{points} \end{array}} \rightarrow \alpha_i \text{ "negative"} \rightarrow \alpha_i^2 \text{ "positive"} \rightarrow \boxed{\begin{array}{c} \text{few} \\ \mathbb{F}_{q^2}\text{-rational} \\ \text{points} \end{array}}$$

Ihara Bound

Say \mathcal{C}/\mathbb{F}_q is a maximal curve. So $\alpha_i = -\sqrt{q}$.

$$\mathcal{C}(\mathbb{F}_{q^2}) \geq \mathcal{C}(\mathbb{F}_q)$$
 $q^2 + 1 - \sum_{i=1}^{2g} q \geq q + 1 + \sum_{i=1}^{2g} \sqrt{q}$

or

$$g \leq \frac{1}{2}(q-\sqrt{q}).$$

Hasse–Weil bound cannot be attained for large g. " α_i cannot all be to the left"

(note: $\frac{1}{2}(q-\sqrt{q})$ is the genus of the Hermitian curve)

Ihara's constant

Ihara:

$$A(q) = \limsup_{g(\mathcal{C}) o \infty} rac{\#\mathcal{C}(\mathbb{F}_q)}{g(\mathcal{C})}$$

 ${\mathcal C}$ runs over all absolutely irreducible, smooth, projective curves over ${\mathbb F}_q.$

Hasse–Weil bound
$$\Longrightarrow A(q) \leq 2\sqrt{q}$$
Ihara $\Longrightarrow A(q) \leq \sqrt{2q} - \frac{1}{2}$
Drinfeld–Vladut $\Longrightarrow A(q) \leq \sqrt{q} - 1$
 $(\mathcal{C}(\mathbb{F}_{q^r}) \geq \mathcal{C}(\mathbb{F}_q))$

How to obtain lower bounds for A(q)?

Find sequences $\mathcal{C}_i/\mathbb{F}_q$ such that $g(\mathcal{C}_i) o \infty$ and

$$\lim_{i\to\infty}\frac{\#\mathcal{C}_i(F_q)}{g(\mathcal{C}_i)} \text{ is large}.$$

Many ways to construct good sequences:

- Modular curves (Elliptic, Shimura, Drinfeld)
- Class field towers (over prime fields)
- Explicit equations (recursively defined)

Modular curves

Ihara (1981), Tsfasman–Vladut–Zink:

Suppose $q=q_0^2$ is a square. Then

$$A(q) \ge \sqrt{q} - 1$$
 (so $A(q) = \sqrt{q} - 1$).

(case $q_0 = p$) Choose prime $\ell \neq p$, with $\ell \equiv 11 \pmod{12}$.

Consider the modular curve $X = X_0(\ell)$ over \mathbb{F}_p .

Curve of genus $(\ell+1)/12$.

Points on $X_0(\ell)$

Points: $\{0,\infty\}$ "cusps", and points corresponding to pairs (E,C), E elliptic curve, C subgroup of E of order ℓ .

Supersingular elliptic curves and their $\ell+1$ subgroups can be defined over \mathbb{F}_{p^2} .

We get many \mathbb{F}_{p^2} -rational supersingular points:

$$\frac{p-1}{12}(\ell+1).$$

So

$$\frac{X(\mathbb{F}_{p^2})}{g(X)} \ge p - 1 = \sqrt{q} - 1.$$

Letting $\ell \to \infty$ we get

$$A(q) \geq \sqrt{q} - 1$$
.

Zink Bound

Zink (Degeneration of Shimura surfaces):

If $q = p^3$, p a prime number, then

$$A(p^3) \geq \frac{2(p^2-1)}{p+2}$$

(generalized by Bezerra–Garcia–Stichtenoth to all cubic finite fields)

Class Field Towers

 \mathcal{C}/\mathbb{F}_q , with function field F.

S non-empty set of rational places of F.

Define sequence (F_n, S_n) inductively:

- $(F_0, S_0) = (F, S)$,
- F_{n+1} is the maximal abelian unramified ℓ -extension of F_n , in which the elements of S_n split completely,
- S_{n+1} is the set of places of F_{n+1} above S_n .

These defines curves over \mathbb{F}_q .

 (S, ℓ) -class field tower of F.

If the (S, ℓ) -class field tower of F is *infinite*, then

$$A(q) \geq \frac{\#S}{g(C)-1}.$$

Golod-Shafarevich

- Serre: There exists c > 0 s.t. $A(q) \ge c \log(q) > 0$ for every q.
- Various results for small q: (Serre, Schoof, Niederreiter, Xing, Yeo, Temkine, Kuhnt, Duursma, Mak,...) A(2) > 0.3169..., A(3) > 0.49287..., etc.

Feng, Pellikaan, Garcia, Stichtenoth,...

Feng, Pellikaan, Garcia, Stichtenoth,...

$$C_2 = \{(a_1, a_2) | F(a_1, a_2) = 0\} \subseteq \overline{\mathbb{F}_q}^2$$

Feng, Pellikaan, Garcia, Stichtenoth,...

Feng, Pellikaan, Garcia, Stichtenoth,...

$$C_{4} = \{(a_{1}, a_{2}, a_{3}, a_{4}) | F(a_{1}, a_{2}) = F(a_{2}, a_{3}) = F(a_{3}, a_{4}) = 0\} \subseteq \overline{\mathbb{F}_{q}}^{4}$$

$$\downarrow \qquad \qquad \downarrow $

Let $\widetilde{\mathcal{C}}_n$ be a smooth projective model corresponding to \mathcal{C}_n .

Find suitable F(U, V) such that

- $\widetilde{\mathcal{C}}_n/\mathbb{F}_q$ are irreducible
- $\#\widetilde{\mathcal{C}}_n(\mathbb{F}_q)$ grows fast
- $g(\widetilde{\mathcal{C}}_n)$ grows slowly.

$$\lambda = \lim_{n \to \infty} \frac{\#\widetilde{C}_n(\mathbb{F}_q)}{g(\widetilde{C}_n)} \le A(q) \le \sqrt{q} - 1$$

Norm-Trace Tower

Garcia-Stichtenoth, 1996 $q = \ell^2$

$$V^{\ell} + V = \frac{U^{\ell+1}}{U^{\ell} + U}$$

Attains the Drinfeld–Vladut bound. Genus computation is difficult (wild ramification) Why many rational points?

$$q = \ell^2 \qquad V^{\ell} + V = \frac{U^{\ell+1}}{U^{\ell} + U}$$

$$X_n^{\ell} + X_n = \frac{X_{n-1}^{\ell+1}}{X_{n-1}^{\ell} + X_{n-1}}, \dots, X_3^{\ell} + X_3 = \frac{X_2^{\ell+1}}{X_2^{\ell} + X_2}, \ X_2^{\ell} + X_2 = \frac{X_1^{\ell+1}}{X_1^{\ell} + X_1}$$

$$q = \ell^2$$
 $V^{\ell} + V = \frac{U^{\ell+1}}{U^{\ell} + U}$ $X_n^{\ell} + X_n = \frac{X_{n-1}^{\ell+1}}{X_{n-1}^{\ell} + X_{n-1}}, \dots, X_3^{\ell} + X_3 = \frac{X_2^{\ell+1}}{X_2^{\ell} + X_2}, \ X_2^{\ell} + X_2 = \frac{X_1^{\ell+1}}{X_1^{\ell} + X_1}$ $X_1 = a_1 \in \mathbb{F}_q \text{ s.t. } Tr_{\mathbb{F}_q/\mathbb{F}_{\ell}}(a_1) \neq 0$ $(\ell^2 - \ell \text{ choices})$

$$q = \ell^2$$
 $V^{\ell} + V = \frac{U^{\ell+1}}{U^{\ell} + U}$ $X_n^{\ell} + X_n = \frac{X_{n-1}^{\ell+1}}{X_{n-1}^{\ell} + X_{n-1}}, \dots, X_3^{\ell} + X_3 = \frac{X_2^{\ell+1}}{X_2^{\ell} + X_2}, \ X_2^{\ell} + X_2 = \frac{X_1^{\ell+1}}{X_1^{\ell} + X_1}$ $X_1 = a_1 \in \mathbb{F}_q \text{ s.t. } Tr_{\mathbb{F}_q/\mathbb{F}_{\ell}}(a_1) \neq 0$ $(\ell^2 - \ell \text{ choices})$

$$X_2=a_2$$
 with $a_2^\ell+a_2=rac{a_1^{\ell+1}}{a_1^\ell+a_1}\in \mathbb{F}_\ellackslash\{0\}$ ℓ choices with $a_2\in \mathbb{F}_q,\, Tr_{\mathbb{F}_q/\mathbb{F}_\ell}(a_2)
eq 0)$

$$q = \ell^2 \qquad V^{\ell} + V = \frac{U^{\ell+1}}{U^{\ell} + U}$$

$$X_n^{\ell} + X_n = \frac{X_{n-1}^{\ell+1}}{X_{n-1}^{\ell} + X_{n-1}}, \dots, X_3^{\ell} + X_3 = \frac{X_2^{\ell+1}}{X_2^{\ell} + X_2}, \ X_2^{\ell} + X_2 = \frac{X_1^{\ell+1}}{X_1^{\ell} + X_1}$$

$$X_1 = a_1 \in \mathbb{F}_q \text{ s.t. } Tr_{\mathbb{F}_q/\mathbb{F}_{\ell}}(a_1) \neq 0$$

$$(\ell^2 - \ell \text{ choices})$$

$$X_2 = a_2 \text{ with } a_2^{\ell} + a_2 = \frac{a_1^{\ell+1}}{a_1^{\ell} + a_1} \in \mathbb{F}_{\ell} \setminus \{0\}$$

$$\ell \text{ choices with } a_2 \in \mathbb{F}_q, \ Tr_{\mathbb{F}_q/\mathbb{F}_{\ell}}(a_2) \neq 0)$$

$$X_3 = a_3 \text{ with } a_3^{\ell} + a_3 = \frac{a_2^{\ell+1}}{a_1^{\ell} + a_2} \in \mathbb{F}_{\ell} \setminus \{0\}$$

 ℓ choices with $a_3 \in \mathbb{F}_q$, $Tr_{\mathbb{F}_q/\mathbb{F}_\ell}(a_3) \neq 0$)

$$q=\ell^2 \qquad V^\ell+V=rac{U^{\ell+1}}{U^\ell+U}$$

$$X_n^{\ell} + X_n = \frac{X_{n-1}^{\ell+1}}{X_{n-1}^{\ell} + X_{n-1}}, \dots, X_3^{\ell} + X_3 = \frac{X_2^{\ell+1}}{X_2^{\ell} + X_2}, \ X_2^{\ell} + X_2 = \frac{X_1^{\ell+1}}{X_1^{\ell} + X_1}$$

$$X_1=a_1\in\mathbb{F}_q \text{ s.t. } Tr_{\mathbb{F}_q/\mathbb{F}_\ell}(a_1)\neq 0$$

$$(\ell^2 - \ell \,\, {\sf choices})$$

$$X_2=a_2$$
 with $a_2^\ell+a_2=rac{a_1^{\ell+1}}{a_1^\ell+a_1}\in \mathbb{F}_\ellackslash\{0\}$

$$\ell$$
 choices with $\mathit{a}_2 \in \mathbb{F}_q, \mathit{Tr}_{\mathbb{F}_q/\mathbb{F}_\ell}(\mathit{a}_2)
eq 0)$

$$X_3 = a_3 \text{ with } a_3^{\ell} + a_3 = \frac{a_2^{\ell+1}}{a_2^{\ell} + a_2} \in \mathbb{F}_{\ell} \setminus \{0\}$$

$$\ell$$
 choices with $a_3 \in \mathbb{F}_q$, $Tr_{\mathbb{F}_q/\mathbb{F}_\ell}(a_3) \neq 0$)

$$\cdots \cdots$$
 so $\#\mathcal{C}_n(\mathbb{F}_q) \geq (\ell^2 - \ell)\ell^{n-1}$

Towers over cubic finite fields

• van der Geer–van der Vlugt, $q=2^3=8, \mathcal{F}_2/\mathbb{F}_q$

$$V^2 + V = U + 1 + 1/U$$

 $\lambda = 3/2$. Attains Zink's bound for p = 2.

• Bezerra–Garcia–Stichtenoth, $q=\ell^3, \mathcal{F}_3/\mathbb{F}_q$

$$\frac{1-V}{V^\ell} = \frac{U^\ell + U + 1}{U} \quad \lambda(\mathcal{F}_3) \geq \frac{2(\ell^2 - 1)}{\ell + 2}.$$

Generalizes Zink's bound.

• B.–Garcia–Stichtenoth, $q=\ell^3, \mathcal{F}_4/\mathbb{F}_q$

$$(V^\ell-V)^{\ell-1}+1=rac{-U^{\ell(\ell-1)}}{(U^{\ell-1}-1)^{\ell-1}}\quad \lambda(\mathcal{F}_4)\geq rac{2(\ell^2-1)}{\ell+2}.$$

Towers over all non-prime fields

B.—Beelen—Garcia—Stichtenoth

$$q = \ell^n, n \ge 2, k = \lfloor n/2 \rfloor$$
:

Notation:
$$Tr_r(t) = t + t^{\ell} + \cdots + t^{\ell^{r-1}}$$

$$\frac{Tr_k(V)-1}{(Tr_{k+1}(V)-1)^{\ell^k}} = \frac{(Tr_k(U)-1)^{\ell^{k+1}}}{(Tr_{k+1}(U)-1)}$$

Lower bound:

- *n* even: $\sqrt{q} 1 \rightarrow \text{Drinfeld-Vladut bound}$
- n=3: $\frac{2(\ell^2-1)}{\ell+2} \rightarrow Zink's$ bound
- For n = 2k + 1 > 3

$$\ell^{k+\frac{1}{2}} - 1 \ge A(\ell^{2k+1}) \ge \lambda \ge \frac{2}{\frac{1}{\ell^k - 1} + \frac{1}{\ell^{k+1} - 1}}.$$

Modular Interpretation

Idea: for classical modular curves many rational points over \mathbb{F}_{p^2} come from the supersingular points.

Why quadratic? Over \mathbb{C} , elliptic curves \leftrightarrow rank 2 lattices.

 $[\mathbb{C}:\mathbb{R}]=2$, no higher rank possible.

Drinfeld Modular Varieties

Drinfeld modules

Lattices ↔ Drinfeld modules

Supersingular Drinfeld modules of rank r and their isogenies can be defined over a degree r extension $\to \mathbb{F}_{q^r}$ -rational points.

Moduli space is (r-1)-dimensional. Find suitable curves passing through the supersingular points.

Almost all known recursive towers with good asymptotic behavior have a modular interpretation.

Elkies "Fantasia": All "optimal" recursive towers are modular!

Towers over prime fields?

Towers over prime fields

B.-Ritzenthaler

Assume q>3. There is an explicit recursive tower $(\mathcal{C}_r)_{r\geq 0}$ over \mathbb{F}_q with limit

$$\lambda \geq \frac{2}{q-2}.$$

Equations can be given explicitly (depend on q).

$$\frac{y^{q+1}+b}{y^q-y} = \frac{2b(x^{q+1}+n)}{(b+n)(x^q-x)},$$

where $-n, -b \in \mathbb{F}_q^{\times}$ are non-squares with $n \neq \pm b$.

Related to Singer subgroups of $\operatorname{Aut}_{\mathbb{F}_q}(\mathbb{P}^1) \simeq \operatorname{PGL}_2(\mathbb{F}_q)$.

