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Maximal curves over finite fields
Notation and terminology
• X ⊆ Pr(Fq) projective, geometrically irreducible, non-singular algebraic curve
defined over Fq

• g genus of X
If r = 2 then g = (d−1)(d−2)

2 , where d = deg(X )

• X (Fq) = X ∩ Pr(Fq)

• Aut(X ) automorphism group of X over Fq
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Maximal curves over finite fields
Maximal curves

X defined over Fq

Hasse-Weil bound
|X (Fq)| ≤ q + 1 + 2g√q.

Definition
X is Fq-maximal if |X (Fq)| = q + 1 + 2g√q.

A necessary condition is that q is a square or g = 0

Example
Hermitian curve:

H` : Y `+1 = X` +X, ` = ph, q = `2

g = `(`− 1)/2, |H`(Fq)| = `3 + 1, Aut(H`) ∼= PGU(3, `)
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Maximal curves over finite fields
Problems

1 Classification and construction: how can we construct maximal curves?

2 Spectrum of genera: which values g > 0 occur as genera of Fq-maximal curves
for a given q?

3 Applications to AG codes: how can we compute the Weierstrass semigroup at
every point of a given maximal curve?
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Classification and construction of maximal curves
Coverings and Galois-coverings
• X ⊆ Pr(Fq) and Y ⊆ Ps(Fq)
• If we have a non-constant φ : X → Y then Y is covered by X (subcover of X )
• Fq(X ) : φ∗(Fq(Y)) is a finite field extension
• Fq(X ) : φ∗(Fq(Y)) is Galois → Y is Galois-covered by X (Galois-subcover of X )

(Kleiman-Serre, 1987)
If X is Fq-maximal and Y is covered by X then Y is Fq-maximal

Conjecture
Every Fq-maximal curve is (Galois-)covered by the Hermitian curve Hq
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Classification and construction of maximal curves
The conjecture is false: Natural Embedding Theorem

(Garcia-Stichtenoth, 2006)
The GS curve X9 −X = Y 7 is F36 -maximal and not Galois-covered by H33 .

• Hermitian Variety in Pr(Fq):
Hr,q : Xq+1

2 +Xq+1
3 + . . .+Xq+1

r = Xq
1X0 +X1X

q
0

(Korchmáros-Torres, 2001)
Un to isomorphisms, Fq2-maximal curves are
• contained in some Hr,q for some r ≥ 2
• of degree q + 1
• not contained in any hyperplane of Pr(Fq)

Definition
r ≥ 2 is the geometrical Frobenius dimension of X .

• If r = 2 then X is the Hermitian curve (up to isomorphism)
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Classification and construction of maximal curves
The conjecture is false: The case r = 3 and the GK curve

(Giulietti-Korchmáros, 2009)
Let q be a prime power of a prime p. The GK-curve

C :
{
Z

q3+1
q+1 = Y q

2 − Y,
Xq +X = Y q+1 → Hermitian curve!

if Fq6 -maximal. if q > 2, C is not Fq6 -covered by Hq3

Question: Why are both the GK and the GS curve Fq6-maximal?
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Classification and construction of maximal curves
The case of Fp2-maximal curves
Conjecture, 2000
Every Fp2 -maximal curve is a subcover of the Hermitian curve Hp

• The conjecture is true for p ≤ 5
• No Fp2-maximal curves not Galois-covered by Hp are known
• Known Fq2 -maximal curves have many automorphisms

Theorem (Bartoli-M.-Torres, Adv. in Geom., 2020)
Let X be an Fp2-maximal curves of genus g with p ≥ 7. If |Aut(X )| > 84(g − 1)
then X is Galois covered by Hp

• Can Theorem be extended when |Aut(X )| ≤ 84(g − 1)? NO!
• First known example: F712-maximal Fricke-MacBeath curve
• (Bartoli-Güneş-M., in progress) The same result is true for Fp4 -maximal curves
unless Aut(X ) has a very special orbits-structure
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Classification and construction of maximal curves
A generalization of the GK-curve
(Garcia-Güneri-Stichtenoth, 2010)
Let q be a power of a prime p, n ≥ 3 odd. The Fq2n-maximal GGS-curve is

Cn :
{
Z

qn+1
q+1 = Y q

2 − Y,
Y q+1 = Xq +X.

Theorem (Duursma-Mak, 2012) → Conjecture for q = 2 (Bulletin of the
Brazilian Math. Soc.)
For q ≥ 3 and n ≥ 5 odd, Cn is not Galois-covered by Hqn over Fq2n

Theorem (Giulietti-M.Zini, FFA, 2016) → From my Master Degree Thesis
For q = 2 and n ≥ 5 odd, Cn is not Galois-covered by H2n over F22n

• Key steps: If Cn ∼= H2n/G : |G| = 2n+1
3 and G acts semiregularly on H2n

• (Hartley, 1925): Maximal subgroups of PSU(3, 2n) and their action on H2n

• (Dickson, 1902): Classification of subgroups of PSL(2, 22n)
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Classification and construction of maximal curves
A new infinite family of maximal curves
• (Giulietti-Korchmáros, 2009) Aut(C)/C(q3+1)/(q+1) ∼= PGU(3, q) entire
Aut(Hq)
• (Guralnick-Malmskog-Pries, Güneri-Ozdemir-Stichtenoth, 2012-2013) If n ≥ 5,
Aut(Cn)/C(qn+1)/(q+1) ∼= PGU(3, q)P∞ maximal subgroup of Aut(Hq)
• (Mitchell 1911, Hartley 1925) Complete list of maximal subgroups of Aut(Hq).
• (M.-Zini, Comm. Algebra, 2018) Let ` be a non-tangent line to Hq. Then
PGU(3, q)` ∼= SL(2, q) o Cq+1 (maximal subgroup)

Question
Is it possible to construct another generalization {Xn}n of C with X3 ∼= C such
that Aut(Xn)/C(qn+1)/(q+1) ∼= PGU(3, q)`?

Let q be a power of a prime p, n ≥ 3 odd,

Xn :

Z
qn+1
q+1 = Y Xq2−X

Xq+1−1 ,

Y q+1 = Xq+1 − 1.
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Classification and construction of maximal curves
Some observations about the family {Cn}n, n odd

Hq : Y q+1 = Xq +X and P∞ its unique point at infinity

• Aut(Hq)P∞ = {αb,c|b, c ∈ Fq2 , bq+1 = cq + c}o 〈βa〉,

αb,c(X,Y ) = (X + bqY + c, Y + b), βa(X,Y ) = (aq+1X, aY ), 〈a〉 = F∗q2

Cn :
{
Y q+1 = Xq +X,

Z
qn+1
q+1 = Y q

2 − Y .
Let α ∈ Aut(Hq)P∞

• If α = αb,c then α(Y q2 − Y ) = Y q
2 − Y =⇒ we can define α(Z) = Z

• if α = (βa)i then α(Y q2 − Y ) = ai(Y q2 − Y ) =⇒ we can define α(Z) = λiZ

where λ(qn+1)/(q+1)
i = ai so that

α

(
Z

qn+1
q+1

)
= λ

qn+1
q+1
i Z

qn+1
q+1 = ai(Y q

2
− Y ) = α(Y q

2
− Y )
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Classification and construction of maximal curves
The idea behind the construction of {Xn}n, n odd

• Define ϕ̃(X,Y, Z) = (ϕ(X), ϕ(Y ),−Z/(1− ρ)X − ρ) then ϕ̃ define a birational
map

C :
{
Y q+1 = Xq +X,

Z
q3+1
q+1 = Y q

2 − Y .
7→ ϕ̃(C) := X3 :

{
Y q+1 = Xq+1 − 1,

Z
q3+1
q+1 = Y Xq2

−X
Xq+1−1 .

• Generalization (as for the GGS): Xn :
{
Y q+1 = Xq+1 − 1,
Z

qn+1
q+1 = Y Xq2

−X
Xq+1−1 .
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Classification and construction of maximal curves
The idea behind the construction of {Xn}n, n odd
Theorem (Beelen-M., Journal of the London Math. Soc., 2018)

1 X3 is isomorphic to the GK curve C,

2 Xn is Fq2n -maximal for every q and n ≥ 3 odd,

3 For every n ≥ 5 and q ≥ 3 Xn is not Galois-covered by Hqn ,

4 For every n ≥ 5, Aut(Xn)/C(qn+1)/(q+1) ∼= PGU(3, q)`, ` line at infinity,

5 Even though g(Xn) = g(Cn) for every q and n, the curves Xn and Cn are
isomorphic if and only if n = 3

• (Beelen-M., FFA, 2020) New other maximal curves as Galois-subcovers of Xn
• (M.- Pallozzi Lavorante, Discrete Math., 2020) Weierstrass semigroups and codes

Questions
• What about other maximal subgroups?
• Can we use the Natural Embedding Theorem for r = 4?
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Spectrum of genera of maximal curves
A method to deal with the Galois covering problem

• Question: How can we decide in general whether a given Fq2 -maximal curve is
new, namely e.g. not Galois-covered by Hq?

(M.-Zini, FFA, 2016)
A method to study Galois subcovers of Hq can be given in a purely geometric
language (using Mitchell and Hartley results on PGU(3, q))

• (M.-Zini, FFA, 2016) Suzuki and Ree curves S8 and R3 → proof of a conjecture
by Rains and Zieve!
• (Giulietti-M.-Zini, FFA, 2016) Generalized GS curves
• (Giulietti-Kawakita-Lia-M., Advances in Geom., 2018) Wiman’s sextics
• (Bartoli-Giulietti-Kawakita-M., FFA, 2020) New curves of genus 4 and 5
constructed using Kani-Rosen Theorem
• (Bartoli-M.-Torres, Advances in Geom., 2020) Fricke-MacBeath curve
• (Giulietti-M.-Quoos-Zini, J. Number Theory, 2020) Skabelund’s curve
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Spectrum of genera of maximal curves
Further applications of the method

• (Hurwitz genus formula) If G ≤ Aut(Hq) ∼= PGU(3, q) then

2g(Hq)− 2 = q2 − q − 2 = 2|G|(g(Hq/G)− 1) +
∑
σ∈G

i(σ)

• (Mitchell 1918- Hartley 1925) The geometry and action of G can be predicted
according to a maximal subgroup of PGU(3, q) containing it.

(M.-Zini, FFA, 2016)
The contribution i(σ) can be computed exactly for all σ ∈ PGU(3, q) depinding
on the order of σ and the geometry of the given group G containing it.

• IDEA: We can use the method to compute the genera of Galois-subcovers of Hq
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Spectrum of genera of maximal curves
Spectrum of genera of maximal curves

Open problem (Garcia-Stichtenoth-Xing, Composition Math., 2000)
Compute the genera of all Galois-subcovers of the Hermitian curve Hq

• Complication: A complete list of G ≤ PGU(3, q) is not known
• General idea: Case-by-Case analysis of subgroups of a given maximal subgroup of
PGU(3, q)
• G fixes an F

q2 -rational point of Hq (Garcia-Stichtenoth-Xing 2000, Abdón-Quoos 2004, Bassa-Ma-Xing-Yeo 2013)

• G fixes a self-polar triangle in P2(F
q2 ) (Giulietti-Hirschfeld-Korchmáros-Torres 2006, Dalla Volta- M. Zini, Communications in

Alg., 2019)

• G fixes a (q + 1)-secant line to Hq (M.-Zini, Communications in Alg., 2018)

• G is contained in the normalizer of a Singer cycle (Cossidente-Korchm’aros-Torres 1999-2000))

• G has no fixed points or triangles (M.-Zini, J. Algebr. Comb., 2019)

(M.-Zini, J. Algebra, 2020)
Complete answer to the open problem when q ≡ 1 (mod 4)
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Weierstrass semigroups on points of known maximal curves
Frobenius dimension and Weierstrass semigroups
Let X be a curve and let P ∈ X
Definition: Weierstrass semigroup at P
H(P ) = {ρ ∈ Z≥0 | there exists a rat. func. f with (f)∞ = ρP}

Weierstrass gap Theorem
G(P ) = N0 \H(P ) contains exactly g(X ) elements called gaps

Theorem
If X is Fq2 -maximal and P ∈ X (Fq2) then q, q + 1 ∈ H(P ) and r ≤ number of
non-gaps less than q + 1

• The structure of H(P ) is almost always the same: Weierstrass points
• Independent interest (e.g. Stöhr-Voloch Theory) and main ingredient to
construct AG codes!
• Hermitian curve: r = 2 → (Garcia-Viana, 1986)
• GK curve: r = 3 (smallest possible) → ?
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Weierstrass semigroups on points of known maximal curves
Weierstrass semigroups on the GK curve C

• (Giulietti-Korchmáros, 2009) H(P ) = 〈q3 − q2 + q, q3, q3 + 1〉, P ∈ C(Fq2)

• (Fanali-Giulietti, 2010) H(P ), P ∈ C(Fq6) \ C(Fq2) and q ≤ 3

• (Duursma, 2011) H(P ), P ∈ C(Fq6) \ C(Fq2) and q ≤ 9

Conjecture (Duursma 2011, IEEE Trans. Inf. Theory)
Let P ∈ C(Fq6) \ C(Fq2). Then

H(P ) = 〈q3 − q + 1, q3 + 1, q3 + i(q4 − q3 − q2 + q − 1) | i = 0, . . . , q − 1〉

• Nothing is known for P 6∈ C(Fq6)

• Main questions:
1 Which points of C are Weierstrass points?
2 Is it possible to determine H(P ) for all P ∈ C? (in particular, to prove the
conjecture)?
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Weierstrass semigroups on points of known maximal curves
Weierstrass semigroups on the GK curve C

(Theorem, Beelen-M., FFA, 2018)
Let P ∈ C. Then
• H(P ) = 〈q3 − q2 + q, q3, q3 + 1〉, if P ∈ C(Fq2);
• H(P ) = 〈q3 − q + 1, q3 + 1, q3 + i(q4 − q3 − q2 + q − 1) | i = 0, . . . , q − 1〉, if
P ∈ C(Fq6) \ C(Fq2) → proof of Duursma’s conjecture;
• H(P ) = N \G, if P 6∈ C(Fq6), where
G = {iq3 +kq+m(q2 +1)+

∑q−2
s=1 ns((s+1)q2)+j+1 | i, j, k,m, n1, . . . , nq−2 ∈

Z≥0, j ≤ q − 1 and i+ j + k +mq +
∑
s ns((s+ 1)q − s) ≤ q2 − 2}.

(Corollary, Beelen-M., FFA, 2018)
The set of Weierstrass points of the GK curve is W = C(Fq6)

→ One of the very few curves in which all Weierstrass semigroups and
points are known!
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Weierstrass semigroups on points of known maximal curves
Why is it a conjecture? Main difficulties
Let P = P(a,b,c) ∈ C(Fq6) \ C(Fq2) and

T := 〈q3 − q + 1, q3 + 1, q3 + i(q4 − q3 − q2 + q − 1) | i = 0, . . . , q − 1〉

• Two aims
1 T ⊆ H(P )
2 |N \ T | = g(C)

• We need functions fρ ∈ Fq6(C) with (fρ)∞ = ρP , ρ generator of T
• An explicit description of fρ(x, y, z) can be really complicated
• Example q = 3: fq4−q2+q−1 = f74 is
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Weierstrass semigroups on points of known maximal curves
Our proof of the Conjecture: T ⊆ H(P )
• There exists z̃P with (z̃P ) = (q3 + 1)P − (q3 + 1)P∞ (Natural Emb. Theorem)
• x̃P = −aq − x+ bqy (tangent line at P |Q on the Hermitian curve)
• P 6∈ C(Fq2): k = 1, 2, k-Frobenius twist of x̃P : x̃(k)

P = −aq2k+1 − x+ bq
2k+1

y
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Weierstrass semigroups on points of known maximal curves
Our proof of the Conjecture: T ⊆ H(P )

(Lemma, Beelen-M., FFA, 2018)
Let

fi = x̃qiP · x̃
(2)
P

(x̃(1)
P )i · z̃q−i+1

P

, i = 1, . . . , q − 1.

Then
(fi)∞ = q3 + i(q4 − q3 − q2 + q − 1)P

while 1/z̃P , (y − b)/z̃P and x̃P /z̃P give 〈q3 − q + 1, q3, q3 + 1〉 ⊆ H(P ). So
T ⊆ H(P )

• (M.- Pallozzi Lavorante, Discrete Math., 2020) H(P ) where P ∈ Xn(Fq2)

• (Bartoli-M.-Zini, Acta Arith., 2020) H(P ) at every P and W : Suzuki curve Sq

• (Beelen-Landi-M., 2020) H(P ) at every P and W : Skabelund curve

23 DTU Compute Maximal curves over finite fields 27.5.2020



Maria Montanucci
Department of Applied Mathematics and Computer Science
Technical University of Denmark (DTU)

Building 303B, Room 150 marimo@dtu.dk.
2800 Kgs. Lyngby, Denmark +45 50106435


	Maximal curves over finite fields
	Notation and terminology
	The three main problems

	Classification and construction of maximal curves
	Natural embedding Theorem: (Galois-)subcovers of the Hermitian curve
	The Giulietti-Korchmáros (GK) curve
	The case of Fp2-maximal curves, p prime
	The second generalized GK curve

	Spectrum of genera of maximal curves
	The Galois-covering problem for maximal curves
	Our method: spectrum of genera of Galois-subcovers of the Hermitian curve

	Weierstrass semigroups on points of known maximal curves
	Weierstrass semigroups on the GK curve: Duursma's conjecture


