Maximal curves over finite fields

Maria Montanucci

DTU Compute

Technical University of Denmark (DTU)

Joint work with: Daniele Bartoli, Peter Beelen, Massimo Giulietti, Leonardo Landi, Vincenzo Pallozzi Lavorante, Luciane Quoos, Fernando Torres, Giovanni Zini

$$f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}(x) = \sum_{i=0}^{a} \frac{(\Delta$$

Outline

- Maximal curves over finite fields
 - Notation and terminology
 - The three main problems
- Classification and construction of maximal curves
 - Natural embedding Theorem: (Galois-)subcovers of the Hermitian curve
 - The Giulietti-Korchmáros (GK) curve
 - \bullet The case of $\mathbb{F}_{p^2}\text{-maximal curves, }p$ prime
 - The second generalized GK curve
- Spectrum of genera of maximal curves
 - The Galois-covering problem for maximal curves
 - Our method: spectrum of genera of Galois-subcovers of the Hermitian curve
- Weierstrass semigroups on points of known maximal curves
 - Weierstrass semigroups on the GK curve: Duursma's conjecture

Maximal curves over finite fields Notation and terminology

- $\mathcal{X} \subseteq \mathbb{P}^r(\overline{\mathbb{F}}_q)$ projective, geometrically irreducible, non-singular algebraic curve defined over \mathbb{F}_q
- g genus of \mathcal{X} If r = 2 then $g = \frac{(d-1)(d-2)}{2}$, where $d = \deg(\mathcal{X})$

•
$$\mathcal{X}(\mathbb{F}_q) = \mathcal{X} \cap \mathbb{P}^r(\mathbb{F}_q)$$

• $Aut(\mathcal{X})$ automorphism group of \mathcal{X} over $\overline{\mathbb{F}}_q$

Maximal curves over finite fields Maximal curves

 \mathcal{X} defined over \mathbb{F}_q

Hasse-Weil bound

 $|\mathcal{X}(\mathbb{F}_q)| \le q + 1 + 2g\sqrt{q}.$

Definition

$$\mathcal{X}$$
 is \mathbb{F}_q -maximal if $|\mathcal{X}(\mathbb{F}_q)| = q + 1 + 2g\sqrt{q}$.

A necessary condition is that q is a square or g=0

Example

Hermitian curve:

$$\mathcal{H}_{\ell}: Y^{\ell+1} = X^{\ell} + X, \quad \ell = p^h, \quad q = \ell^2$$

 $g = \ell(\ell - 1)/2, \qquad |\mathcal{H}_{\ell}(\mathbb{F}_q)| = \ell^3 + 1, \qquad Aut(\mathcal{H}_{\ell}) \cong PGU(3, \ell)$

1 Classification and construction: how can we construct maximal curves?

2 Spectrum of genera: which values g > 0 occur as genera of \mathbb{F}_q -maximal curves for a given q?

3 Applications to AG codes: how can we compute the Weierstrass semigroup at every point of a given maximal curve?

Classification and construction of maximal curves Coverings and Galois-coverings

• $\mathcal{X} \subseteq \mathbb{P}^r(\mathbb{F}_q)$ and $\mathcal{Y} \subseteq \mathbb{P}^s(\mathbb{F}_q)$

- If we have a non-constant $\phi : \mathcal{X} \to \mathcal{Y}$ then \mathcal{Y} is covered by \mathcal{X} (subcover of \mathcal{X})
- $\overline{\mathbb{F}}_q(\mathcal{X}): \phi^*(\overline{\mathbb{F}}_q(\mathcal{Y}))$ is a finite field extension
- $\overline{\mathbb{F}}_q(\mathcal{X}): \phi^*(\overline{\mathbb{F}}_q(\mathcal{Y}))$ is Galois $\to \mathcal{Y}$ is Galois-covered by \mathcal{X} (Galois-subcover of \mathcal{X})

(Kleiman-Serre, 1987)

If ${\mathcal X}$ is ${\mathbb F}_q\text{-maximal}$ and ${\mathcal Y}$ is covered by ${\mathcal X}$ then ${\mathcal Y}$ is ${\mathbb F}_q\text{-maximal}$

Conjecture

Every \mathbb{F}_q -maximal curve is (Galois-)covered by the Hermitian curve \mathcal{H}_q

Classification and construction of maximal curves The conjecture is false: Natural Embedding Theorem

(Garcia-Stichtenoth, 2006)

The GS curve $X^9 - X = Y^7$ is \mathbb{F}_{3^6} -maximal and not Galois-covered by \mathcal{H}_{3^3} .

• Hermitian Variety in $\mathbb{P}^r(\overline{\mathbb{F}}_q)$: $\mathcal{H}_{r,q}: X_2^{q+1} + X_3^{q+1} + \ldots + X_r^{q+1} = X_1^q X_0 + X_1 X_0^q$

(Korchmáros-Torres, 2001)

Un to isomorphisms, \mathbb{F}_{q^2} -maximal curves are

- contained in some $\mathcal{H}_{r,q}$ for some $r \geq 2$
- of degree q+1

• not contained in any hyperplane of $\mathbb{P}^r(\overline{\mathbb{F}}_q)$

Definition

- $r\geq 2$ is the geometrical Frobenius dimension of $\mathcal{X}.$
- If r = 2 then \mathcal{X} is the Hermitian curve (up to isomorphism)

(Giulietti-Korchmáros, 2009)

Let q be a prime power of a prime p. The GK-curve

$$\mathcal{C}: \begin{cases} Z^{\frac{q^3+1}{q+1}} = Y^{q^2} - Y, \\ X^q + X = Y^{q+1} \to \text{Hermitian curve!} \end{cases}$$

if $\mathbb{F}_{q^6}\text{-maximal.}$ if q>2, $\mathcal C$ is not $\mathbb{F}_{q^6}\text{-covered}$ by $\mathcal H_{q^3}$

Question: Why are both the GK and the GS curve \mathbb{F}_{q^6} -maximal?

8 DTU Compute

Maximal curves over finite fields 27.5.2020

Conjecture, 2000

Every \mathbb{F}_{p^2} -maximal curve is a subcover of the Hermitian curve \mathcal{H}_p

- \bullet The conjecture is true for $p\leq 5$
- No \mathbb{F}_{p^2} -maximal curves not Galois-covered by \mathcal{H}_p are known
- Known \mathbb{F}_{q^2} -maximal curves have many automorphisms

Theorem (Bartoli-M.-Torres, Adv. in Geom., 2020)

Let \mathcal{X} be an \mathbb{F}_{p^2} -maximal curves of genus g with $p \geq 7$. If $|Aut(\mathcal{X})| > 84(g-1)$ then \mathcal{X} is Galois covered by \mathcal{H}_p

- Can Theorem be extended when $|Aut(\mathcal{X})| \leq 84(g-1)$? NO!
- First known example: \mathbb{F}_{71^2} -maximal Fricke-MacBeath curve
- (Bartoli-Güneş-M., in progress) The same result is true for \mathbb{F}_{p^4} -maximal curves unless $Aut(\mathcal{X})$ has a very special orbits-structure
- 9 DTU Compute

A generalization of the GK-curve

(Garcia-Güneri-Stichtenoth, 2010)

Let q be a power of a prime $p,\ n\geq 3$ odd. The $\mathbb{F}_{q^{2n}}\text{-maximal GGS-curve is}$

$$\mathcal{C}_{n}: \begin{cases} Z^{\frac{q^{n}+1}{q+1}} = Y^{q^{2}} - Y, \\ Y^{q+1} = X^{q} + X. \end{cases}$$

Theorem (Duursma-Mak, 2012) \rightarrow Conjecture for q = 2 (Bulletin of the Brazilian Math. Soc.)

For $q\geq 3$ and $n\geq 5$ odd, \mathcal{C}_n is not Galois-covered by \mathcal{H}_{q^n} over $\mathbb{F}_{q^{2n}}$

Theorem (Giulietti-M.Zini, FFA, 2016) \rightarrow From my Master Degree Thesis

For q=2 and $n\geq 5$ odd, \mathcal{C}_n is not Galois-covered by \mathcal{H}_{2^n} over $\mathbb{F}_{2^{2n}}$

- Key steps: If $C_n \cong \mathcal{H}_{2^n}/G$: $|G| = \frac{2^n + 1}{3}$ and G acts semiregularly on \mathcal{H}_{2^n}
- (Hartley, 1925): Maximal subgroups of $PSU(3, 2^n)$ and their action on \mathcal{H}_{2^n}
- (Dickson, 1902): Classification of subgroups of $PSL(2, 2^{2n})$
- 10 DTU Compute

Classification and construction of maximal curves A new infinite family of maximal curves

- (Giulietti-Korchmáros, 2009) $Aut(\mathcal{C})/C_{(q^3+1)/(q+1)} \cong PGU(3,q)$ entire $Aut(\mathcal{H}_q)$
- (Guralnick-Malmskog-Pries, Güneri-Ozdemir-Stichtenoth, 2012-2013) If $n \ge 5$, $Aut(\mathcal{C}_n)/C_{(q^n+1)/(q+1)} \cong PGU(3,q)_{P_{\infty}}$ maximal subgroup of $Aut(\mathcal{H}_q)$
- (Mitchell 1911, Hartley 1925) Complete list of maximal subgroups of $Aut(\mathcal{H}_q)$.
- (M.-Zini, Comm. Algebra, 2018) Let ℓ be a non-tangent line to \mathcal{H}_q . Then $PGU(3,q)_{\ell} \cong SL(2,q) \rtimes C_{q+1}$ (maximal subgroup)

Question

Is it possible to construct another generalization $\{\mathcal{X}_n\}_n$ of \mathcal{C} with $\mathcal{X}_3 \cong \mathcal{C}$ such that $Aut(\mathcal{X}_n)/C_{(q^n+1)/(q+1)} \cong PGU(3,q)_\ell$?

Let q be a power of a prime $p\text{, }n\geq 3$ odd,

$$\mathcal{X}_{n}: \begin{cases} Z^{\frac{q^{n}+1}{q+1}} = Y \frac{X^{q^{2}}-X}{X^{q+1}-1}, \\ Y^{q+1} = X^{q+1}-1. \end{cases}$$

Classification and construction of maximal curves Some observations about the family $\{C_n\}_n$, n odd

 $\mathcal{H}_q: Y^{q+1} = X^q + X$ and P_∞ its unique point at infinity

•
$$Aut(\mathcal{H}_q)_{P_{\infty}} = \{ \alpha_{b,c} | b, c \in \mathbb{F}_{q^2}, \ b^{q+1} = c^q + c \} \rtimes \langle \beta_a \rangle,$$

 $\alpha_{b,c}(X,Y) = (X + b^q Y + c, Y + b), \quad \beta_a(X,Y) = (a^{q+1}X, a^{Y}), \quad \langle a \rangle = \mathbb{F}_{q^2}^*$

$$\mathcal{C}_n: \begin{cases} Y^{q+1} = X^q + X, \\ Z^{\frac{q^n+1}{q+1}} = Y^{q^2} - Y. \end{cases} \qquad Let \ \alpha \in Aut(\mathcal{H}_q)_{P_{\infty}}$$

• If $\alpha = \alpha_{b,c}$ then $\alpha(Y^{q^2} - Y) = Y^{q^2} - Y \implies$ we can define $\alpha(Z) = Z$

• if $\alpha = (\beta_a)^i$ then $\alpha(Y^{q^2} - Y) = a^i(Y^{q^2} - Y) \implies$ we can define $\alpha(Z) = \lambda_i Z$ where $\lambda_i^{(q^n+1)/(q+1)} = a^i$ so that

$$\alpha\left(Z^{\frac{q^{n}+1}{q+1}}\right) = \lambda_i^{\frac{q^{n}+1}{q+1}} Z^{\frac{q^{n}+1}{q+1}} = a^i (Y^{q^2} - Y) = \alpha(Y^{q^2} - Y)$$

Classification and construction of maximal curves The idea behind the construction of $\{\mathcal{X}_n\}_n$, *n* odd

• Define $\tilde{\varphi}(X,Y,Z) = (\varphi(X),\varphi(Y),-Z/(1-\rho)X-\rho)$ then $\tilde{\varphi}$ define a birational map

$$\mathcal{C}: \begin{cases} Y^{q+1} = X^q + X, \\ Z^{\frac{q^3+1}{q+1}} = Y^{q^2} - Y. \end{cases} \mapsto \tilde{\varphi}(\mathcal{C}) := \mathcal{X}_3: \begin{cases} Y^{q+1} = X^{q+1} - 1, \\ Z^{\frac{q^3+1}{q+1}} = Y \frac{X^{q^2} - X}{X^{q+1} - 1}. \end{cases}$$

• Generalization (as for the GGS):
$$\mathcal{X}_n : \begin{cases} Y^{q+1} = X^{q+1} - 1, \\ Z^{\frac{q^n+1}{q+1}} = Y \frac{X^{q^2} - X}{X^{q+1} - 1}. \end{cases}$$

13 DTU Compute

Theorem (Beelen-M., Journal of the London Math. Soc., 2018)

- **1** \mathcal{X}_3 is isomorphic to the GK curve \mathcal{C} ,
- **2** \mathcal{X}_n is $\mathbb{F}_{q^{2n}}$ -maximal for every q and $n \geq 3$ odd,
- **(3)** For every $n \ge 5$ and $q \ge 3 \mathcal{X}_n$ is not Galois-covered by \mathcal{H}_{q^n} ,
- (4) For every $n \ge 5$, $Aut(\mathcal{X}_n)/C_{(q^n+1)/(q+1)} \cong PGU(3,q)_{\ell}$, ℓ line at infinity,
- **6** Even though $g(\mathcal{X}_n) = g(\mathcal{C}_n)$ for every q and n, the curves \mathcal{X}_n and \mathcal{C}_n are isomorphic if and only if n = 3
- (Beelen-M., FFA, 2020) New other maximal curves as Galois-subcovers of \mathcal{X}_n
- (M.- Pallozzi Lavorante, Discrete Math., 2020) Weierstrass semigroups and codes

Questions

- What about other maximal subgroups?
- Can we use the Natural Embedding Theorem for r = 4?

Spectrum of genera of maximal curves A method to deal with the Galois covering problem

• Question: How can we decide in general whether a given \mathbb{F}_{q^2} -maximal curve is *new*, namely e.g. not Galois-covered by \mathcal{H}_q ?

(M.-Zini, FFA, 2016)

A method to study Galois subcovers of \mathcal{H}_q can be given in a purely geometric language (using Mitchell and Hartley results on PGU(3,q))

- (M.-Zini, FFA, 2016) Suzuki and Ree curves S_8 and $\mathcal{R}_3 \rightarrow$ proof of a conjecture by Rains and Zieve!
- (Giulietti-M.-Zini, FFA, 2016) Generalized GS curves
- (Giulietti-Kawakita-Lia-M., Advances in Geom., 2018) Wiman's sextics
- (Bartoli-Giulietti-Kawakita-M., FFA, 2020) New curves of genus 4 and 5 constructed using Kani-Rosen Theorem
- (Bartoli-M.-Torres, Advances in Geom., 2020) Fricke-MacBeath curve
- (Giulietti-M.-Quoos-Zini, J. Number Theory, 2020) Skabelund's curve

Spectrum of genera of maximal curves Further applications of the method

• (Hurwitz genus formula) If $G \leq Aut(\mathcal{H}_q) \cong PGU(3,q)$ then

$$2g(\mathcal{H}_q) - 2 = q^2 - q - 2 = 2|G|(g(\mathcal{H}_q/G) - 1) + \sum_{\sigma \in G} i(\sigma)$$

• (Mitchell 1918- Hartley 1925) The geometry and action of G can be predicted according to a maximal subgroup of PGU(3,q) containing it.

(M.-Zini, FFA, 2016)

The contribution $i(\sigma)$ can be computed exactly for all $\sigma \in PGU(3,q)$ depinding on the order of σ and the geometry of the given group G containing it.

• IDEA: We can use the method to compute the genera of Galois-subcovers of \mathcal{H}_q

Open problem (Garcia-Stichtenoth-Xing, Composition Math., 2000)

Compute the genera of all Galois-subcovers of the Hermitian curve \mathcal{H}_q

- Complication: A complete list of $G \leq PGU(3,q)$ is not known
- \bullet General idea: Case-by-Case analysis of subgroups of a given maximal subgroup of PGU(3,q)
- G fixes an \mathbb{F}_{q^2} -rational point of \mathcal{H}_q (Garcia-Stichtenoth-Xing 2000, Abdón-Quoos 2004, Bassa-Ma-Xing-Yeo 2013)
- G fixes a self-polar triangle in $\mathbb{P}^2(\mathbb{F}_{q^2})$ (Giulietti-Hirschfeld-Korchmáros-Torres 2006, Dalla Volta- M. Zini, Communications in Alg., 2019)
- G fixes a (q + 1)-secant line to H_q (M.-Zini, Communications in Alg., 2018)
- G is contained in the normalizer of a Singer cycle (Cossidente-Korchm'aros-Torres 1999-2000))
- G has no fixed points or triangles (M.-Zini, J. Algebr. Comb., 2019)

(M.-Zini, J. Algebra, 2020)

Complete answer to the open problem when $q \equiv 1 \pmod{4}$

Weierstrass semigroups on points of known maximal curves

Frobenius dimension and Weierstrass semigroups

Let ${\mathcal X}$ be a curve and let $P \in {\mathcal X}$

Definition: Weierstrass semigroup at P

 $H(P) = \{ \rho \in \mathbb{Z}_{\geq 0} \mid \text{ there exists a rat. func. } f \text{ with } (f)_\infty = \rho P \}$

Weierstrass gap Theorem

 $G(P) = \mathbb{N}_0 \setminus H(P)$ contains exactly $g(\mathcal{X})$ elements called gaps

Theorem

If \mathcal{X} is \mathbb{F}_{q^2} -maximal and $P\in\mathcal{X}(\mathbb{F}_{q^2})$ then $q,q+1\in H(P)$ and $r\leq$ number of non-gaps less than q+1

- The structure of H(P) is almost always the same: Weierstrass points
- Independent interest (e.g. Stöhr-Voloch Theory) and main ingredient to construct AG codes!
- Hermitian curve: $r = 2 \rightarrow$ (Garcia-Viana, 1986)
- GK curve: r = 3 (smallest possible) \rightarrow ?

Weierstrass semigroups on points of known maximal curves Weierstrass semigroups on the GK curve ${\cal C}$

- (Giulietti-Korchmáros, 2009) $H(P) = \langle q^3 q^2 + q, q^3, q^3 + 1 \rangle$, $P \in \mathcal{C}(\mathbb{F}_{q^2})$
- (Fanali-Giulietti, 2010) H(P), $P \in \mathcal{C}(\mathbb{F}_{q^6}) \setminus \mathcal{C}(\mathbb{F}_{q^2})$ and $q \leq 3$
- (Duursma, 2011) H(P), $P \in \mathcal{C}(\mathbb{F}_{q^6}) \setminus \mathcal{C}(\mathbb{F}_{q^2})$ and $q \leq 9$

Conjecture (Duursma 2011, IEEE Trans. Inf. Theory)

Let $P \in \mathcal{C}(\mathbb{F}_{q^6}) \setminus \mathcal{C}(\mathbb{F}_{q^2})$. Then

$$H(P) = \langle q^3 - q + 1, q^3 + 1, q^3 + i(q^4 - q^3 - q^2 + q - 1) \mid i = 0, \dots, q - 1 \rangle$$

• Nothing is known for $P \notin \mathcal{C}(\mathbb{F}_{q^6})$

• Main questions:

- **1** Which points of C are Weierstrass points?
- **2** Is it possible to determine H(P) for all $P \in C$? (in particular, to prove the conjecture)?

(Theorem, Beelen-M., FFA, 2018)

Let $P \in \mathcal{C}$. Then

- $H(P) = \langle q^3 q^2 + q, q^3, q^3 + 1 \rangle$, if $P \in \mathcal{C}(\mathbb{F}_{q^2})$;
- $H(P) = \langle q^3 q + 1, q^3 + 1, q^3 + i(q^4 q^3 q^2 + q 1) \mid i = 0, \dots, q 1 \rangle$, if $P \in \mathcal{C}(\mathbb{F}_{q^6}) \setminus \mathcal{C}(\mathbb{F}_{q^2}) \rightarrow \text{proof of Duursma's conjecture};$

•
$$H(P) = \mathbb{N} \setminus G$$
, if $P \notin \mathcal{C}(\mathbb{F}_{q^6})$, where
 $G = \{iq^3 + kq + m(q^2 + 1) + \sum_{s=1}^{q-2} n_s((s+1)q^2) + j + 1 \mid i, j, k, m, n_1, \dots, n_{q-2} \in \mathbb{Z}_{\geq 0}, j \leq q-1 \text{ and } i+j+k+mq + \sum_s n_s((s+1)q-s) \leq q^2-2\}.$

(Corollary, Beelen-M., FFA, 2018)

The set of Weierstrass points of the GK curve is $W = \mathcal{C}(\mathbb{F}_{q^6})$

\rightarrow One of the very few curves in which all Weierstrass semigroups and points are known!

 $(2x^{3}b^{72} + 2x^{3}b^{64} + 2x^{3}b^{56} + 2x^{3}b^{48} + 2x^{3}b^{40} + 2x^{3}b^{32} + 2x^{3}b^{24} + 2x^{3}b^{16} + 2x^{3}b^{8} + 2x^{3} + 2x^{2}yb^{27} + x^{2}yb^{3} + x^{2}b^{36} + 2x^{3}b^{46} + 2x^{3}b^{46$

 $+2x^{2}b^{12} + xy^{2}b^{54} + 2xy^{2}b^{6} + xya^{3}b^{27} + 2xya^{3}b^{3} + xyb^{63} + 2xyb^{39} + 2xa^{3}b^{36} + xa^{3}b^{12} + xb^{72} + xb^{48} + xb^{24} + y^{3}b^{73} + y^{3}b^{65} + y^{3}b^{49} + y^{3}b^{49} + y^{3}b^{41} + 2y^{3}b^{33} + y^{3}b^{25} + y^{3}b^{17} + 2y^{3}b^{9} + y^{2}a^{3}b^{54} + 2y^{2}a^{3}b^{6} + 2y^{2}b^{66} + y^{2}b^{18} + 2ya^{6}b^{27} + ya^{6}b^{3} + ya^{3}b^{63} + 2a^{9}b^{72} + 2a^{9}b^{64} + 2a^{9}b^{56} + 2a^{9}b^{40} + 2a^{9}b^{32} + 2a^{9}b^{24} + 2a^{9}b^{16} + 2a^{9}b^{8} + 2a^{9} + a^{6}b^{36} + 2a^{6}b^{12} + a^{3}b^{72} + a^{3}b^{48} + 2ya^{3}b^{39} + 2yb^{75} + 2yb^{51} + 2yb^{27} + a^{3}b^{24} + b^{84} + 2b^{12})/(-a^{27} - x + b^{27}y + c^{27}z)^{3}$

Weierstrass semigroups on points of known maximal curves Our proof of the Conjecture: $T \subseteq H(P)$

- There exists \tilde{z}_P with $(\tilde{z}_P) = (q^3 + 1)P (q^3 + 1)P_\infty$ (Natural Emb. Theorem)
- $\tilde{x}_P = -a^q x + b^q y$ (tangent line at P|Q on the Hermitian curve)
- $P \notin \mathcal{C}(\mathbb{F}_{q^2})$: k = 1, 2, k-Frobenius twist of \tilde{x}_P : $\tilde{x}_P^{(k)} = -a^{q^{2k+1}} x + b^{q^{2k+1}}y$

(Lemma, Beelen-M., FFA, 2018)

Let

$$f_i = \frac{\tilde{x}_P^{qi} \cdot \tilde{x}_P^{(2)}}{(\tilde{x}_P^{(1)})^i \cdot \tilde{z}_P^{q-i+1}}, \qquad i = 1, \dots, q-1.$$

Then

$$(f_i)_{\infty} = q^3 + i(q^4 - q^3 - q^2 + q - 1)P$$

while $1/\tilde{z}_P$, $(y-b)/\tilde{z}_P$ and \tilde{x}_P/\tilde{z}_P give $\langle q^3-q+1,q^3,q^3+1\rangle\subseteq H(P)$. So $T\subseteq H(P)$

- (M.- Pallozzi Lavorante, Discrete Math., 2020) H(P) where $P \in \mathcal{X}_n(\mathbb{F}_{q^2})$
- (Bartoli-M.-Zini, Acta Arith., 2020) H(P) at every P and W: Suzuki curve \mathcal{S}_q
- (Beelen-Landi-M., 2020) H(P) at every P and W: Skabelund curve

Technical University of Denmark

Thank you

Maria Montanucci Department of Applied Mathematics and Computer Science Technical University of Denmark (DTU)

Building 303B, Room 150 2800 Kgs. Lyngby, Denmark marimo@dtu.dk. +45 50106435