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VARIATION OF CANONICAL HEIGHT AND EQUIDISTRIBUTION

By LAURA DEMARCO and NIKI MYRTO MAVRAKI

Abstract. Let π : E→B be an elliptic surface defined over a number field K , where B is a smooth
projective curve, and let P :B→E be a section defined over K with canonical height ĥE(P ) �= 0. In
this article, we show that the function t �→ ĥEt(Pt) onB(K) is the height induced from an adelically
metrized line bundle with continuous semipositive metrics on B. The proof builds on work of Sil-
verman and results from complex dynamical systems. Applying arithmetic equidistribution theorems
(of Chambert-Loir, Thuillier, and Yuan), we obtain the equidistribution of points t ∈ B(K) where
Pt is torsion, and we give an explicit description of the limiting distribution on B(C). Finally, com-
bined with results of Masser and Zannier, we show that—for any non-special section P of a family of
abelian varieties A→B that split as a product of elliptic curves—there is a positive lower bound on
the height ĥAt(Pt), after excluding finitely many points t∈B, thus addressing a conjecture of Zhang
from 1998.

1. Introduction. Suppose E→B is an elliptic surface defined over a num-
ber field K, so B is a smooth projective curve and all but finitely many fibers Et,
t ∈ B(K), are smooth elliptic curves. We let ĥE denote the Néron-Tate canonical
height of E viewed as an elliptic curve over the function field k =K(B); we let
ĥEt denote the canonical height on a smooth fiber Et(K).

Suppose that P :B→E is a section defined over K for which ĥE(P ) �= 0, so,
in particular, the points Pt on the fiber are not torsion in Et for all t. Tate showed
that the function

t �−→ ĥEt
(

Pt
)

defines a Weil height on B(K), up to a bounded error [Ta]. More precisely, there
exists a divisor DP ∈ Pic(B)⊗Q of degree equal to ĥE(P ) so that

ĥEt
(

Pt
)

= hDP (t)+O(1),(1.1)

where hDP is a Weil height on B(K) associated to DP . In a series of three articles
[Si1, Si3, Si4], Silverman refined statement (1.1) by analyzing the Néron decom-
position of the canonical height on the fibers

ĥEt
(

Pt
)

=
1

[K : Q]

∑

v∈MK

nv λ̂Et,v
(

Pt
)
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where MK denotes the set of places of the number field K, and nv = [Kv : Qv] are
the integers appearing in the product formula

∏

v∈MK
|x|nvv = 1 for all x ∈K∗.

In this article, we explain how Silverman’s conclusions about the local func-
tions λ̂Et,v(Pt) are precisely the input needed to show that t �→ ĥEt(Pt) is a “good”
height function on the base curve B, from the point of view of equidistribution.
Combining his work with methods from complex dynamics, as in [DWY], and the
inequalities of Zhang on successive minima [Zh1, Zh2], we prove:

THEOREM 1.1. LetK be a number field and k=K(B) for a smooth projective
curve B defined over K. Fix an elliptic surface E→B defined over K and a point
P ∈E(k) satisfying ĥE(P ) �= 0. Then

t �−→ ĥEt
(

Pt
)

,

defined for t with smooth fibers, extends to a height function on all of B(K) in-
duced from an adelically metrized ample line bundle LP , with continuous semi-
positive metrics, satisfying

hLP (B) := c1
(LP

)2
/
(

2c1
(LP

))

= 0.

Theorem 1.1 implies that our height function on B satisfies the hypotheses of
the equidistribution theorems of Chambert-Loir, Thuillier, and Yuan for points of
small height on curves [CL1, Th, Y], and we deduce the following:

COROLLARY 1.2. Let K be a number field and k =K(B) for a smooth pro-
jective curve B defined over K. Fix an elliptic surface E → B defined over K
and a point P ∈ E(k) satisfying ĥE(P ) �= 0. There is a collection of probability
measures μP = {μP,v : v ∈MK} on the Berkovich analytifications Ban

v such that
for any infinite, non-repeating sequence tn ∈B(K) with

ĥEtn
(

Ptn
)−→ 0 as n−→ ∞,

the discrete measures

1

|Gal(K/K) · tn|
∑

t∈Gal(K/K)·tn
δt

converge weakly on Ban
v to the measure μP,v at each place v of K .

Remark 1.3. The measures μP,v of Corollary 1.2 are not difficult to describe, at
least at the archimedean places. At each archimedean place v, there is a canonical
positive (1,1)-current Tv on the surface E(C) (with continuous potentials away
from the singular fibers) which restricts to the Haar measure on each smooth fiber
Et(C). The measure μP,v on B(C) is just the pull-back of this current by the sec-
tion P . Moreover, at every place, the measure μP,v is the Laplacian of the local
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height function λ̂Et,v(Pt), away from its singularities. We give more details about
(and a dynamical perpective on) the construction of the current Tv in Section 3.

As a consequence of Theorem 1.1, and combined with the work of Masser
and Zannier [MZ1, MZ2, MZ3], we obtain the so-called Bogomolov extension of
their theorems. Fix integer m ≥ 2, and suppose that Ei→ B is an elliptic surface
over a curve B, defined over Q, for i = 1, . . . ,m. We consider sections P of the
fiber product A = E1×B · · · ×B Em → B defined over Q. We say that a section
P = (P1,P2, . . . ,Pm) is special if the following two conditions are satisfied.

(1) For each i= 1, . . . ,m, either Pi is torsion on Ei or ĥEi(Pi) �= 0.
(2) For any pair i,j ∈ {1, . . . ,m} such that neither Pi nor Pj is torsion, there

are an isogeny φ : Ei→ Ej and non-zero group endomorphisms a,b of Ej so that
a◦φ(Pi) = b(Pj).
Note that the first condition is satisfied for every section P of A if we assume
that each Ei is non-isotrivial, because then Pi ∈ Ei(k) is torsion if and only if
ĥEi(Pi) = 0.

If a family of abelian varieties A→B is isogenous to a fiber product of elliptic
surfaces (after performing a base change B′ →B if needed), we say that a section
of A is special if it is special on the fiber product.

It is not hard to see that a special section P will specialize to a torsion point Pt
in the fiber At for infinitely many t ∈B(K). For a proof see [Za, Chapter 3] or, for
a dynamical proof, see [De1]. The converse statement is also true, but it is much
more difficult: Masser and Zannier proved that if Pt is torsion in At for infinitely
many t ∈B(Q), then the section P must be special [MZ2, MZ3]. We use Theorem
1.1 to extend these results of Masser-Zannier from points of height 0 to points of
small height:

THEOREM 1.4. Let B be a quasiprojective smooth algebraic curve defined
over Q. Suppose A → B is a family of abelian varieties of relative dimension
m ≥ 2 defined over Q which is isogenous to a fibered product of m ≥ 2 elliptic
surfaces. Let L be a line bundle on A which restricts to an ample and symmetric
line bundle on each fiber At, and let ĥt be the induced Néron-Tate canonical height
on At, for each t ∈ B(Q). For each non-special section P : B → A defined over
Q, there is a constant c= c(L,P )> 0 so that

{

t ∈B(Q) : ĥt
(

Pt
)

< c
}

is finite.

If A→ B is isotrivial, then Theorem 1.4 is a special case of the Bogomolov
Conjecture, proved by Ullmo and Zhang [Zh3, U]. A key ingredient in their proofs
is the equidistribution theorem of Szpiro, Ullmo, and Zhang [SUZ]. In his 1998
ICM lecture notes [Zh4], Zhang presented a conjecture about geometrically simple
families of abelian varieties, which stated, in its most basic form:
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CONJECTURE 1.5. (Zhang) LetB be a quasiprojective smooth algebraic curve
defined over Q. Suppose A → B is a non-isotrivial family of abelian varieties
with fiber dimension > 1, defined over Q with a simple generic fiber. Let L be a
line bundle on A which restricts to an ample and symmetric line bundle on each
fiber At, and let ĥt be the induced Néron-Tate canonical height on At, for each
t ∈ B(Q). For each non-torsion section P : B → A defined over Q, there is a
constant c= c(L,P )> 0 so that

{

t ∈B(Q) : ĥt
(

Pt
)

< c
}

is finite.

When the dimension of the fibers At is equal to 2, the finiteness of {t ∈B(Q) :
ĥt(Pt) = 0} for sections as in Conjecture 1.5 was established recently by Masser
and Zannier in [MZ4]. It is well known that the conclusion of Conjecture 1.5 can
fail to hold if A is not simple and certainly fails if it is a family of elliptic curves,
as mentioned above. However, the results of Masser and Zannier in their earlier
work [MZ2, MZ3] suggested a formulation of Zhang’s conjecture for the non-
simple case when A splits as a product of elliptic curves where the “non-torsion”
hypothesis on P should be replaced by “non-special”; this is what we proved in
our Theorem 1.4.

Remark 1.6. Theorem 1.1, Corollary 1.2, and Theorem 1.4 were obtained in
the special case of the Legendre family Et = {y2 = x(x−1)(x− t)} over B = P

1

and the abelian variety At = Et×Et, for sections P with x-coordinates in Q(t)

in [DWY], using methods from complex dynamical systems, without appealing to
Silverman and Tate’s results on the height function. Moreover, restricting further
to sections P with constant x-coordinate (in P

1(Q)), Theorem 1.4 was obtained
without relying on the theorems of Masser and Zannier and gave an alternate proof
of their result. This includes the special case treated by Masser and Zannier in their
article [MZ1]. For sections with constant x-coordinate, the hypothesis on P (that
ĥE(P ) �= 0) is equivalent to asking that x(P ) �= 0,1,∞ [DWY, Proposition 1.4].

Comments and acknowledgments. This project was motivated, in part, by ex-
periments to visualize Silverman’s results on the variation of canonical height
[Si1, Si3, Si4] in terms of the measures μP,v at archimedean places, and to ex-
amine their dependence on P . In particular, the measure detects the failure of the
local height function λ̂Et,v(Pt) to be harmonic; compare with the comments on
non-analyticity preceding Theorem I.0.3 of [Si1]. The images appearing in Section
6 were first presented at the conference in honor of Silverman’s birthday, August
2015.

We thank Charles Favre, Dragos Ghioca, Robert Rumely, Joseph Silverman,
and Amaury Thuillier for helpful suggestions.
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2. Silverman’s work.

2.1. Preliminaries. Let F be a product formula field of characteristic 0, so
there exists a family MF of non-trivial absolute values on F and a collection of
positive integers nv for v ∈MF so that

∏

v∈MF

|x|nvv = 1

for all x∈F∗. LetE/F be an elliptic curve with originO, expressed in Weierstrass
form as

E =
{

y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6

}

with discriminant Δ. Denote by

ĥE :E(F)−→ [0,∞)

the Néron-Tate canonical height function; it can be defined by

ĥE(P ) =
1
2

lim
n→∞

h(x([n]P ))

n2

where h is the naive Weil height on P
1 and x : E→ P

1 is the degree 2 projection
to the x-coordinate.

For each v ∈MF , we let Fv denote the completion of F with respect to | ·
|v and Cv denote the completion of the algebraic closure of Fv with respect to
| · |v. For each v, we fix an embedding of F into Cv. The canonical height has a
decomposition into local heights, as

ĥE(P ) =
1

|Gal(F/F) ·P |
∑

Q∈Gal(F/F)·P

∑

v∈MF

nv λ̂E,v(Q)

for P ∈ E(F)\{O}, with the local heights λ̂E,v characterized by three properties
[Si2, Chapter 6, Theorem 1.1, p. 455]:

(1) λ̂E,v is continuous on E(Cv) \ {O} and bounded on the complement of
any v-adic neighborhood of O;

(2) the limit of λ̂E,v(P )− 1
2 log |x(P )|v exists as P →O in E(Cv); and

(3) for all P = (x,y) ∈ E(Cv) with [2]P �=O,

λ̂E,v
(

[2]P
)

= 4λ̂E,v(P )− log
∣

∣2y+a1x+a3
∣

∣

v
+

1
4

log |Δ|v.
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2.2. Variation of canonical height: the set up. Now let K be a number
field andE→B an elliptic surface defined over a number fieldK with zero section
O :B→E. Let P :B→E be a non-zero section defined over K, and assume that

ĥE(P ) �= 0

when viewing P as a point on the elliptic curve E defined over k = K(B). For
each t ∈B(K) such that the fiber Et is non-singular, we have a point Pt ∈Et(K).
We will investigate the function

t �−→ ĥEt
(

Pt
)

which is well defined at all but finitely many t ∈ B(K). Furthermore, via the em-
bedding of K into Cv for each place v ∈MK , we may view E → B as defined
over Cv and consider the Néron local heights λ̂Et,v(Pt) on the non-singular fibers
Et as functions of t ∈B(Cv).

Let DE(P ) be the Q-divisor on B defined by

DE(P ) =
∑

γ∈B(K)

λ̂E,ordγ (P ) · (γ).(2.1)

Here, λ̂E,ordγ (P ) is the local canonical height of the point P on the elliptic curve
E over k =K(B) at the place ordγ , for each γ ∈B(K). The degree of DE(P ) is
equal to ĥE(P ). It follows from the definitions that suppDE(P ) is a subset of the
finite set

{

t ∈B(K) : Et is singular
}∪{t ∈B(K) : Pt =Ot

}

.

By enlarging K, we may assume that the support of DE(P ) is contained in B(K).

Remark 2.1. That DE(P ) is a Q-divisor is standard, following from the fact
that the numbers λ̂E,ordγ (P ) can be viewed as arithmetic intersection numbers on a
Néron local model. See [Si2, Chapter III, Theorem 9.3] for a proof that ĥE(P )∈Q;
see [CS, Section 6, p. 203] and [La1, Chapter 11, Theorem 5.1] for proofs that each
local function λ̂E,v also takes values in Q; see [DG, Theorem 1.1] for a dynamical
proof.

2.3. Variation of canonical height: quasi triviality. Let hDE(P ) be an an-
alytic Weil height on B(K) as defined in [Si4, Section 3, Example 1(a)]. That is,
we let g be the genus of B, and for each point γ ∈ B(K), we choose an element
ξγ of K(B) which has a pole of order 2g+ 1 at γ and no other poles. For each
non-archimedean place v of K, set

λDE(P ),v(t) =
1

2g+1

∑

γ∈B(K)

λ̂E,ordγ (P ) log+
∣

∣ξγ(t)
∣

∣

v
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for all t ∈ B(Cv)\ suppDE(P ). For archimedean places v, the local height is de-
fined by

λDE(P ),v(t) =
1

2(2g+1)

∑

γ∈B(K)

λ̂E,ordγ (P ) log
(

1+
∣

∣ξγ(t)
∣

∣

2
v

)

.

We set

hDE(P )(t) =
1

|Gal(K/K) · t|
∑

s∈Gal(K/K)·t

∑

v∈MK

λDE(P ),v(s)

for all t ∈B(K). For fixed choices of ξγ , we will call the associated height hDE(P )

our “reference height” for the divisor DE(P ). Silverman proved:

THEOREM 2.2. [Si4, Theorem III.4.1] For any choice of reference height
hDE(P ), there is a finite set S of places so that

λ̂Et,v
(

Pt
)

= λDE(P ),v(t)

for all t ∈B(K)\ suppDE(P ) and all v ∈MK \S.

2.4. Variation of canonical height: continuity. Fix a point t0 ∈B(K) and
a uniformizer u ∈K(B) for t0, and consider the function

VP,t0,v(t) := λ̂Et,v
(

Pt
)

+ λ̂E,ordt0
(P ) log

∣

∣u(t)
∣

∣

v
,(2.2)

which is not a priori defined at t0. Theorem 2.2 implies that

VP,t0,v ≡ 0

for all but finitely many places v in a v-adic neighborhood of t0. Silverman also
proved the following:

THEOREM 2.3. [Si3, Theorem II.0.1] Fix t0 ∈ B(K) and a uniformizer u at
t0. For all v ∈MK , there exists a neighborhood U ⊂ B(Cv) containing t0 so that
the function VP,t0,v of (2.2) extends to a continuous function on U .

3. A dynamical perspective. Recall that the Néron-Tate height ĥE and
its local counterparts λ̂E,v can be defined dynamically. Letting E be an elliptic
curve defined over a number field K, the multiplication-by-2 endomorphism φ on
E descends to a rational function of degree 4 on P

1, via the standard quotient π
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identifying a point P with its additive inverse:

E

π
��

φ �� E

π
��

P
1

fφ �� P1.

(3.1)

An elementary, but key, observation is that a point is torsion on E if and only if its
quotient in P

1 is preperiodic for fφ. The height ĥE on E(K) satisfies

ĥE(P ) =
1
2

lim
n→∞

1
4n
h
(

fnφ (πP )
)

where h is the standard logarithmic Weil height on P
1(K). Now let E → B be

an elliptic surface defined over a number field K, and let P : B → E be a sec-
tion, also defined over K. In this section, we use this dynamical perspective to
give a proof of the subharmonicity of the local height functions t �→ λ̂Et,v(Pt) and
the extensions VP,t0,v of (2.2). We will present this fact as an immediate conse-
quence of now-standard complex-dynamical convergence arguments, at least when
the fiber Et is smooth and the local height λ̂Et,v(Pt) is finite. Near singular fibers,
we utilize the maximum principle and standard results on removable singularities
for subharmonic functions. The same reasoning applies in both archimedean and
non-archimedean settings.

In Section 3.3 we provide the background to justify the explicit description
of the distributions μP,v from Corollary 1.2 at the archimedean places v of K , as
mentioned in Remark 1.3.

3.1. Canonical height and escape rates. As in Section 2.1, we let E be
an elliptic curve in Weierstrass form, defined over a product-formula field F of
characteristic 0. We define a rational function f = φ/ψ on P

1 by the formula

f
(

x(P )
)

= x
(

[2]P
)

for all P ∈ E(F). Here x(P ) is the x-coordinate for a point P ; this function x
plays the role of π in (3.1). In coordinates, we have φ(x) = x4− b4x

2−2b6x− b8

and ψ(x) = 4x3 + b2x
2 +2b4x+ b6 = (2y+a1x+a3)

2 for P = (x,y).
By a lift of f , we mean any homogeneous polynomial map F on A

2, defined
over F , so that τ ◦ F = f ◦ τ , where τ : A2 \ {(0,0)} → P

1 is the tautological
projection. A lift of a point x∈P1 is a choice ofX ∈A2\{(0,0)} so that τ(X) = x.

The standard lift of f will be the map F : A2→ A
2 defined by

F(z,w) =
(

w4φ(z/w),w4ψ(z/w)
)

.(3.2)
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For each v ∈MF , the v-adic escape rate is defined by

GF,v(z,w) = lim
n→∞

log‖Fn(z,w)‖v
4n

where
∥

∥(z,w)
∥

∥

v
= max

{|z|v, |w|v
}

.

Any other lift of f is of the form cF for some c ∈ F∗; observe that

GcF,v = GF,v+
1
3

log |c|v .

Note that

GF,v(αx,αy) = GF,v(x,y)+ log |α|v
for any choice of lift F . Furthermore, GF,v is continuous on C

2
v \{(0,0)}, as proved

in the archimedean case by [HP, FS]. For non-archimedean absolute values v,
GF,v extends continuously to the product of Berkovich affine lines A1,an

v ×A
1,an
v \

{(0,0)} [BR, Chapter 10].

PROPOSITION 3.1. For the standard lift F of f , and for each place v of F , the
local canonical height function satisfies

λ̂E,v(P ) =
1
2
GF,v(x,y)− 1

2
log |y|v− 1

12
log |Δ|v

where x(P ) = (x : y).

Proof. The proof is immediate from the properties of GF,v by checking the
three characterizing conditions for λ̂E,v. �

3.2. Variation of canonical height: subharmonicity. Now let K be a
number field and E → B an elliptic surface defined over K with zero section
O :B→E. Let k =K(B); viewing E as an elliptic curve defined over k, we also
fix a point P ∈E(k). Recall the function VP,t0,v(t) defined in (2.2).

THEOREM 3.2. For every t0 ∈B(K) and uniformizer u in k at t0, the function

VP,t0,v(t) := λ̂Et,v
(

Pt
)

+ λ̂E,ordt0
(P ) log

∣

∣u(t)
∣

∣

v
,

extends to a continuous and subharmonic function on a neighborhood of t0 in the
Berkovich analytification Ban

v .

The continuity was already established in Theorem 2.3, though it was not ex-
plicitly stated for the Berkovich space. The argument below takes care of that. We
begin with a lemma.
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LEMMA 3.3. Fix α ∈ k∗ and t0 ∈B(K). Let u ∈ k be a uniformizer at t0. For
each place v of K, the function

t �−→ log
∣

∣αt
∣

∣

v
− (ordt0α

)

log
∣

∣u(t)
∣

∣

v

is harmonic in a neighborhood of t0 in the Berkovich analytification Ban
v .

Proof. This is Silverman’s [Si3, Lemma II.1.1(c)] plus a removable singulari-
ties lemma for harmonic functions. See also [BR, Proposition 7.19] for the exten-
sion of a harmonic function to a disk in the Berkovich space Ban

v . �

Fix P ∈E(k). Let F and X be lifts of f and x(P ) to k2, respectively. Iterating
F , we set

(

An,Bn
)

:= Fn(X) ∈ k2

and observe that

GF,ordt0
(X) =− lim

n→∞

min{ordt0An,ordt0Bn}
4n

(3.3)

from the definition of the escape rate. We let Ft and Xt denote the specializations
of F and X at a point t ∈ B(K); they are well defined for all but finitely many t.
Observe that if F is the standard lift for E then so is Ft for all t.

PROPOSITION 3.4. Fix P ∈E(k), t0 ∈B(K), and v ∈MK . For any choice of
lifts F of f and X of x(P ), the function

GP (t;v) := GFt,v
(

Xt

)

+GF,t0(X) log
∣

∣u(t)
∣

∣

v

extends to a continuous and subharmonic function in a neighborhood of t0 in Ban
v .

Proof. First observe that the conclusion does not depend on the choices of F
and X. Indeed,

GctFt,v
(

αtXt

)

+GcF,t0(αX) log
∣

∣u(t)
∣

∣

v
= GFt,v

(

Xt

)

+GF,t0(X) log
∣

∣u(t)
∣

∣

v

+
1
3

(

log
∣

∣ct
∣

∣

v
− (ordt0c

)

log
∣

∣u(t)
∣

∣

v

)

+ log
∣

∣αt
∣

∣

v
− (ordt0α

)

log
∣

∣u(t)
∣

∣

v

for any c,α ∈ k∗. So by Lemma 3.3 the function GP (t;v) is continuous and sub-
harmonic for one choice if and only if it is continuous and subharmonic for all
choices.

Let F be the standard lift of f . Suppose that P =O. Since F(1,0) = (1,0), we
compute that

GO(t;v) = GFt,v(1,0)+GF,t0(1,0) log
∣

∣u(t)
∣

∣

v
≡ 0.
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Now suppose that P �=O. Fix t0 ∈B(K) and local uniformizer u at t0. Choose
a lift F of f so that the coefficients of F have no poles at t0, with Ft0 �= (0,0).
Choose lift X of x(P ) so that Xt is well defined for all t near t0 and Xt0 �= (0,0).
As above, we write

Fn(X) =
(

An,Bn
)

and put

an = min
{

ordt0An,ordt0Bn
}

so that an ≥ 0 for all n and a0 = 0. Set

Fn(t) = Fnt (Xt)/u(t)
an .

For each place v of K, we set

hn,v(t) =
log‖Fn(t)‖v

4n
.

By construction, the limit of hn,v (for t near t0 with t �= t0) is exactly the function
GP for these choices. In fact, for t in a small neighborhood of t0, but with t �= t0,
the function ft on P

1 is a well-defined rational function of degree 4; so the special-
ization of the homogeneous polynomial map Ft satisfies F−1

t {(0,0)} = {(0,0)}.
Furthermore, as the coefficients of Ft depend analytically on t, the functions hn,v
converge locally uniformly to the function GP away from t= t0. This can be seen
with a standard telescoping sum argument, used often in complex dynamics, as in
[BH, Proposition 1.2]. In particular, GP is continuous on a punctured neighbor-
hood of t0.

At the archimedean places v, and for each n, the function hn,v is clearly con-
tinuous and subharmonic in a neighborhood of t0. At non-archimedean places v,
this definition extends to a Berkovich disk around t0, setting

hn,v(t) =
1

4n
max

{

log
[

An(T )/T
an
]

t
, log

[

Bn(T )/T
an
]

t

}

where [·]t is the seminorm on K[[T ]] associated to the point t. Each of these func-
tions hn,v is continuous and subharmonic for t in a Berkovich disk around t0.
(Compare [BR, Example 8.7, Proposition 8.26(D), and equation (10.9)].)

LEMMA 3.5. For all v, and by shrinking the radius r if necessary, the functions
hn,v are uniformly bounded from above on the (Berkovich) disk Dr.

Proof. As observed above, the functions hn,v converge locally uniformly away
from t= t0 to the continuous function GP (t). Choose a small radius r, and let

Mv = sup
n

max
|t|v=r

hn,v(t)
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which is finite by the convergence. Because the functions are subharmonic, the
Maximum Principle implies that hn,v(t)≤Mv throughout the disk of radius r, for
all n. For the non-archimedean places, there is also a Maximum Principle on the
Berkovich disk, where the role of the circle of radius r is played by the Type II
point associated to the disk of radius r (see [BR, Proposition 8.14]). �

We can now complete the proof of Proposition 3.4. As each hn,v is subhar-
monic, and the functions are uniformly bounded from above on the disk by Lemma
3.5, we know that the (upper-semicontinuous regularization of the) limsup of these
functions is subharmonic. See [BR, Proposition 8.26(F)] for a proof in the non-
archimedean case. �

Proof of Theorem 3.2. Subharmonicity now follows from Proposition 3.1,
Lemma 3.3, and Proposition 3.4. The continuity at each archimedean place
follows from Theorem 2.3. The continuity at each non-archimedean place is a
combination of the continuity on the punctured Berkovich disk (as in the proof of
Proposition 3.4) and the continuity on Type I (classical) points given in Theorem
2.3. �

3.3. The measures on the base. Here we provide more details about the
description of the measures appearing in the statement of Corollary 1.2, as dis-
cussed in Remark 1.3.

Fix an archimedean place v and any point t0 ∈B(K). Choosing a uniformizer
u at t0, recall the definition of VP,t0,v from (2.2). We define

μP,v := ddcVP,t0,v(t)(3.4)

on a neighborhood of t0 in Ban
v ; note that this is independent of the choice of u.

Note that μP,v can be expressed as

μP,v = ddcλ̂Et,v
(

Pt
)

for t outside of the finitely many points in the support of the divisor DE(P ) or
where the fiber Et is singular. Note, further, that μP,v assigns no mass to any indi-
vidual point t0, because the potentials are bounded by Theorem 3.2. The details on
the metric and the equidistribution theorem in Section 4 will show that these are
exactly the measures that arise as the distribution of the points of small height in
Corollary 1.2.

It is well known that the local height function on a smooth elliptic curve is a
potential for the Haar measure. That is, for fixed t we have

ddcλ̂Et,v(·) = ωt− δo
where ωt is the normalized Haar measure on Et and δo is a delta-mass supported at
the origin of Et; see, e.g., [La2, Theorem II.5.1]. We present an alternative proof
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of this fact related to dynamics as part of Proposition 3.6, as a consequence of
Proposition 3.1.

PROPOSITION 3.6. LetE→B be an elliptic surface and P :B→E a section,
both defined over a number field K. Let S ⊂ E be the union of the finitely many
singular fibers in E. For each archimedean place v of K, there is a positive, closed
(1,1) current Tv on E \S with locally continuous potentials so that Tv|Et is the
Haar measure on each smooth fiber, and P ∗Tv is equal to the measure μP,v.

Remark 3.7. As Tv has continuous potentials, the restriction Tv|Et and the
pullback P ∗Tv are well defined. That is, we have Tv|Et = ddc(g|Et) where g is a
locally defined potential of Tv, and P ∗Tv = ddc(g ◦P ) locally on B. The measure
μP,v has no atoms, so it is determined by Tv along the image of P in E \S .

Proof of Proposition 3.6. Let us fix any small neighborhood U in the base
curve B(C) so that all fibers Et are smooth for t ∈ U . Let ft be the map on P

1

defined in §3.1; by shrinking U if necessary, we can find lifts Ft of ft that are holo-
morphic in t ∈U . From [HP, FS] (or the proof of [BH, Proposition 1.2]), we know
that the escape rate

GFt,v(z,w) = lim
n→∞

log‖Fnt (z,w)‖v
4n

is continuous and plurisubharmonic as a function of (t,z,w) ∈U×(C2 \{(0,0)}).
The current

ddcGFt,v(z,w)

projects to a closed and positive (1,1)-current T̂v on the complex surface U ×P
1,

with locally continuous potentials. This current T̂v has the property that, restricted
to each fiber P1, its total mass is 1; and the induced measure on the fiber is the
measure of maximal entropy for the rational map ft [Ly, HP].

The restriction E|U of the elliptic surface E over U maps with degree 2 to the
complex surface U ×P

1 by the projection π of (3.1). The current T̂v can be pulled
back to E as 1

2 dd
c(g ◦π) where g is a locally-defined continuous potential for T̂v.

Covering the base of E \S by sets of the form U , the local definitions glue to form
the closed, positive (1,1)-current Tv on E \S .

If P : B → E is a section defined over the number field K, then P ∗Tv has
potential given locally by

1
2
g ◦π ◦P =

1
2
GFt,v

(

Xt

)

for any lift Xt of π(Pt) ∈ P
1. Proposition 3.1 yields that P ∗Tv must coincide with

the measure μP,v defined in (3.4).
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Finally, to conclude that Tv|Et is equal to the normalized Haar measure ωt,
we may use the well-known dynamical fact that for each fixed t in the base, the
measure ωt projects by π to P

1 to the unique measure of maximal entropy for the
map ft; see, e.g., [Mi, Section 7]. �

4. The adelic metric and equidistribution. In this section we give the
proofs of Theorem 1.1 and Corollary 1.2.

We first outline the proofs. Let E → B be an elliptic surface defined over a
number field K with zero section O :B→E, and let P :B→E be a section also
defined over K so that ĥE(P ) �= 0. Recall from Section 2.2 that we introduced a
Q-divisor

DE(P ) =
∑

γ∈B(K)

λ̂E,ordγ (P ) · (γ)

on B. By enlarging K, we may assume that suppDE(P ) lies in B(K). We will
define an adelic metric on the ample line bundle LP associated to the Q-divisor
DE(P ), inducing a height function hLP such that

hLP (t) = ĥEt
(

Pt
)

for all but finitely many t ∈B(K)

and

hLP (t)≥ 0 for all t ∈B(K).

Applying Silverman’s results on the variation of canonical height, Theorems 2.2
and 2.3, we will deduce that the metric is continuous and adelic. From Theorem
3.2, we will conclude that the metric is also semipositive in the sense of Zhang
[Zh1]. We will use Zhang’s inequalities [Zh2] to deduce that the height of the
underlying curve hLP (B) := c1(LP )2/(2c1(LP )) may be computed as

hLP (B) = 0.

Consequently, we will be able to apply the equidistribution results of Chambert-
Loir, Thuillier, and Yuan [CL1, Th, Y] to complete our proofs.

4.1. The metric and its properties. Let m ∈ N be such that

D =m ·DE(P )

is an integral divisor. Let Lm be the associated line bundle on B. Note that
deg(Lm) = mĥE(P ) > 0 so Lm is ample; by replacing m with a multiple, we
may assume that Lm is very ample.
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Fix a place v of K. Let U be an open subset of Ban
v . Each section s ∈ Lm(U)

is identified with a meromorphic function f on U satisfying

(f)≥−D.

We set

∥

∥s(t)
∥

∥

v
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e−mλ̂Et,v(Pt)|f(t)|v if f(t) is finite and non-zero

0 if ordtf >−mλ̂E,ordt(P )

e−mVP,t,v(t) otherwise,

taking a locally-defined uniformizer u= f 1/ordtf at t in the definition of VP,t,v from
(2.2).

THEOREM 4.1. The metric ‖ · ‖ = {‖ · ‖v}v∈MK
on Lm is continuous, semi-

positive, and adelic.

Proof. The continuity and semipositivity follows from Theorem 3.2. (In [CL2],
semipositivity of a continuously metrized line bundle on a curve is defined in terms
of subharmonicity of potentials for the curvature form at each archimedean place,
and as a uniform limit of “smooth semipositive” metrics at each non-archimedean
place. In [Th], it is established that subharmonicity of potentials is a sufficient
notion at all places, and Thuillier proves in [Th, Theorem 4.3.3] that this notion
of semipositivity coincides with that of Zhang [Zh1]. See also [FG, Lemma 3.11,
Theorem 3.12] where this same argument is applied in a dynamical context.) The
adelic condition follows from Theorem 2.2. �

4.2. The associated height function. A height function on B(K) is de-
fined by setting

hP (t) :=
1
m

1

|Gal(K/K) · t|
∑

s∈Gal(K/K)·t

∑

v∈MK

−nv log
∥

∥φ(s)
∥

∥

v
(4.1)

where φ is any global section ofLm which is nonvanishing along the Galois orbit of
t, and ‖ ·‖v is the metric of Section 4.1. Recall that suppDE(P )⊂B(K); we may
assume that our sections φ are defined over K, and the product formula guarantees
our height is independent of the choice of φ.

Our next goal is to prove the following two important facts about this height
function hP .

PROPOSITION 4.2. The height function hP satisfies

hP (t) = ĥEt
(

Pt
)

for all t ∈B(K) such that the fiber Et is smooth.
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PROPOSITION 4.3. The height function hP satisfies

hP (t)≥ 0

for all t ∈B(K).

Proof of Proposition 4.2. First fix t ∈ B(K) \ suppDE(P ) with smooth fiber
Et. Choose a section φ defined over K that does not vanish along the Galois orbit
of t, and let f be the associated meromorphic function on B. Then f takes finite
and non-zero values along the Galois orbit of t. We have,

hP (t) =
1
m

1

|Gal(K/K) · t|
∑

s∈Gal(K/K)·t

∑

v∈MK

nv
(

mλ̂Es,v
(

Ps
)− log |f(s)|v

)

=
1
m

1

|Gal(K/K) · t|
∑

s∈Gal(K/K)·t

∑

v∈MK

mnv λ̂Es,v
(

Ps
)

= ĥEt
(

Pt
)

.

where the second equality follows from the product formula.
For t0 ∈ suppDE(P ) such that Et0 is smooth, it is necessarily the case that

Pt0 = Ot0 (as observed in Section 2.2), and therefore ĥEt0 (Pt0) = 0. To compute
hP (t0), observe that t0 ∈ B(K) so its Galois orbit is trivial; fixing a uniformizer
u ∈K(B) at t0, we have

hP
(

t0
)

=
∑

v∈MK

nvVP,t0,v
(

t0
)

where VP,t0,v is the function of (2.2) associated to the uniformizer u.
We can compute hP (t0) using the dynamical interpretation of the local heights,

described in Section 3.1. Fix a Weierstrass equation for E in a neighborhood
of t0 and write P = (xP ,yP ). The assumption that Pt0 = Ot0 is equivalent to
ordt0xP < 0. After possibly shrinking U , write xP = (u)ordt0 (xP )A0 for the chosen
uniformizer u and a function A0 ∈ K(B) that does not vanish in U . We choose
a lift X of xP on U defined as X = (A0,B0), where B0 := (u)−ordt0(xP ). Notice
that A0 and B0 are regular at t0. Let F be the standard lift in these coordinates, de-
fined in (3.2); it satisfies Ft0(1,0) = (1,0), and we have GF,ordt0

(A0,B0) = 0. Since
ordt0ΔE = 0, Proposition 3.1 implies that

VP,t0,v(t) =
1
2
GFt,v

(

A0(t),B0(t)
)− 1

12
log
∣

∣ΔE(t)
∣

∣

v

for all t ∈ U . Therefore,

VP,t0,v
(

t0
)

=
1
2
GFt0 ,v

(

A0
(

t0
)

,0
)− 1

12
log
∣

∣ΔE

(

t0
)∣

∣

v

=
1
2

lim
n→∞

1
4n

log
∥

∥Fnt0
(

A0
(

t0
)

,0
)∥

∥

v
− 1

12
log
∣

∣ΔE

(

t0
)∣

∣

v
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=
1
2

lim
n→∞

1
4n

log
∣

∣A0(t0)
4n
∣

∣

v
− 1

12
log
∣

∣ΔE

(

t0
)∣

∣

v

=
1
2

log
∣

∣A0
(

t0
)∣

∣

v
− 1

12
log
∣

∣ΔE

(

t0
)∣

∣

v
.

The product formula now yields that hP (t0) = 0, as claimed. �

To prove Proposition 4.3, we first reduce to the case that the elliptic surface
E→B has semi-stable reduction; that is, all of its fibers are either smooth or have
multiplicative reduction. The next lemma describes how the height associated with
the divisor DE(P ) behaves under base extensions of the elliptic surface E→B. It
is adapted from [Si3, Reduction Lemma II.2.1]. We include it here for complete-
ness.

LEMMA 4.4. Let μ : B′ → B be a finite map of smooth projective curves, let
E′ → B′ be a minimal model for E×BB′, and let P ′ : B′ → E′ be the extension
of the section P . For each t0 ∈ B(K) and t′0 ∈ μ−1({t0}) ⊂ B′(Cv), there is a
neighborhood U of t′0 in B′(Cv) and a regular non-vanishing function f on U

such that

VP,t0,v
(

μ(t′)
)−VP ′,t′0,v(t

′) = log
∣

∣f(t′)
∣

∣

v

on U \{t′0}. In particular,

VP,t0,v
(

t0
)−VP ′,t′0,v

(

t′0
)

= log
∣

∣f
(

t′0
)∣

∣

v
.

Proof. Let u be a uniformizer at t0, u′ a uniformizer at t′0 and n= ordt′0(μ
∗u).

Since local heights are invariant under base extension we have

λ̂E ′,ordt′0
(P ′) = nλ̂E,ordt0

(P ).(4.2)

Notice that for all t′ in a punctured neighborhood of t′0 the fibers E′t′ are smooth.
Hence the map E′ → E gives an isomorphism between the fibers E′t′ → Eμ(t′).
Under this isomorphism P ′t′ ∈ E′t′ is mapped to Pμ(t′) ∈ Eμ(t′). Invoking now the
uniqueness of the Néron local heights, we have

λ̂Eμ(t′),v
(

Pμ(t′)
)

= λ̂E ′
t′ ,v
(

P ′t′
)

.(4.3)

Combining (4.2) and (4.3) we get that for t′ in a punctured neighborhood of t′0,

VP,t0,v
(

μ(t′)
)

= VP ′,t′0,v(t
′)+ λ̂E,ordt0

(P ) log

∣

∣

∣

∣

u(μ(t′))
u′n(t′)

∣

∣

∣

∣

v

.

The definition of n yields that the function f(t′) =
(u(μ(t′))
u′n(t′)

)λ̂E,ordt0
(P )

is regular

and non-vanishing at t′0. The first part of the lemma follows.
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Finally, Theorem 2.3 allows us to conclude that

VP,t0,v
(

μ
(

t′0
))−VP ′,t′0,v

(

t′0
)

= log
∣

∣f
(

t′0
)∣

∣

v

at the point t′0, as claimed. �

The following lemma will allow us to prove Proposition 4.3 in the case that a
fiber has multiplicative reduction. The proof is lengthy, but it is merely a collection
of computations using the explicit formulas for the local height functions, as in
[Si2, Theorem VI.3.4, VI.4.2].

LEMMA 4.5. Let E→ B be an elliptic surface and let P : B→ E be a non-
zero section defined over K. Then there exists a finite extension L of the number
field K so that, for each t0 ∈ B(K) such that Et0 has multiplicative reduction,
there exists an x(t0) ∈ L∗ so that

VP,t0,v
(

t0
)

= log
∣

∣x
(

t0
)∣

∣

v

at all places v of L.

Proof. We let

E : y2 = x3 +ax+ b,(4.4)

be a minimal Weierstrass equation for E over an affine subset W ⊂B defined over
K with t0 ∈W . Here a,b∈K(B) are regular functions at t0. Using this Weierstrass
equation we write

P =
(

xP ,yP
)

,

where xP ,yP ∈K(B). Since E→B has multiplicative reduction over t0 ∈B(K),
we have

N := ordt0ΔE ≥ 1 and ordt0a= 0;(4.5)

see [Si5, Proposition VII.5.1]. Let v be a place of K (archimedean or non-
archimedean). We denote by jE the j-invariant of E→W , given by

jE(t) = 1728
(4a(t))3

ΔE(t)
.

Notice that equation (4.5) yields that jE has a pole at t0. Hence, we can find a
v-adic open neighborhood U of t0 and an analytic map

ψ : U −→ {q ∈ Cv : |q|v < 1
}

,
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such that the following holds: If j is the modular j-invariant [Si2, Chapter V], then
we have

jE(t) = j
(

ψ(t)
)

and ordt0ψ =N.

The function ψ(t) is given as

ψ(t) =
1

jE(t)
+

744

j2
E(t)

+
750420

j3
E(t)

+ · · · ∈ Z

[[

(

jE(t)
)−1
]]

.(4.6)

In the following, we choose a uniformizer u ∈K(B) at t0, and we identify ψ with
its expression ψ(t) ∈ Cv[[u]] and write

ψ(t) = βu(t)N +u(t)N+1f(t), for t ∈ U \{t0
}

.(4.7)

Equation (4.6) yields that β ∈ K \{0} and f(t) ∈K[[u]]. Following the proof of
[Si3, Section 6] and after possibly shrinking U we have isomorphisms

Et
(

Cv

) ∼−−→ C
∗
v

/

ψ(t)Z
∼−−→ Cψ(t),(4.8)

where Cψ(t) is the elliptic curve given by y2 = 4x3 − g2(ψ(t))x− g3(ψ(t)) for
t ∈ U \{t0}. Under these isomorphisms, we have

Pt �−→ w(t) �−→ (℘(w(t),ψ(t)),℘′(w(t),ψ(t))).
Here g2,g3 are the modular invariants, given by their usual q-series

g2(q) =
1

12

(

1+240
∞
∑

n=1

n3qn

1− qn
)

, g3(q) =
1

216

(

−1+504
∞
∑

n=1

n5qn

1− qn
)

and ℘ is the Weierstrass ℘-function given by

℘(w,q) =
1
12

+
∑

n∈Z

qnw

(1− qnw)2 −2
∞
∑

n=1

nqn

1− qn ,

℘′(w,q) =
∑

n∈Z

qnw(1+ qnw)
(1− qnw)3 .

(4.9)

In view of [Si3, Lemma II.6.2], after possibly replacing P by −P , we may assume
that w : U → Cv is an analytic map satisfying

0≤m := ordt0w ≤
1
2

ordt0ψ.(4.10)

In the following we identify w with its series in Cv[[u]] and write

w(t) = αum(t)+um+1(t)g(t),(4.11)

where α ∈Cv and g(t) ∈Cv[[u]].
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We claim that w(t) ∈K[[u]]. To see this, notice that from [Si5, Chapter III.1]
we have that for t ∈ U

(

℘
(

w(t),ψ(t)
)

,℘′
(

w(t),ψ(t)
))

=
(

ν−2(t)xP (t),2ν
−3(t)yP (t)

)

,

where

ν(t)12 =
ΔE(t)

Δ(ψ(t))
.

In the equation above Δ denotes the modular discriminant given by

Δ(q) = g2(q)
3−27g3(q)

3.

Since the functions ψ,ΔE and Δ are defined over K , we have that Y (t) :=
2ν−3(t)yP (t) is also defined over K. Since Y (t) = ℘′(w(t),ψ(t)) ∈ K[[u]] and
ψ(t) ∈K[[u]] we get that w(t) ∈K[[u]].

Therefore, there are non-zero constants α,β,γ ∈ K \ {0}, non-negative inte-
gers k,m ∈ N and functions f(t),g(t),h(t) ∈K[[u]] such that for all t ∈ U

ψ(t) = βuN (t)+ f(t)uN+1(t), w(t) = αum(t)+ g(t)um+1,

1−w(t) = γuk(t)+h(t)uk+1(t).
(4.12)

Next, we aim to express x(t0) (as in the statement of the lemma) in terms of
α,β,γ ∈K.

Using the isomorphisms in 4.8, the uniqueness of the local canonical heights
and the explicit formulas for the local canonical heights [Si2, Theorem VI.3.4,
VI.4.2], we get

λ̂Et,v
(

Pt
)

= λ̂
(

w(t),ψ(t)
)

=−1
2
B2

(

log |w(t)|v
log |ψ(t)|v

)

log
∣

∣ψ(t)
∣

∣

v
− log

∣

∣1−w(t)∣∣
v

−
∑

n≥1

log
∣

∣

(

1−ψ(t)nw(t))(1−ψ(t)nw(t)−1)
∣

∣

v
,

(4.13)

where B2(s) = s2− s+1/6 is the second Bernoulli polynomial.
Since ordt0ψ =N ≥ 1 and using (4.10), we get

lim
t
v−→t0

∑

n≥1

log
∣

∣

(

1−ψ(t)nw(t))(1−ψ(t)nw(t)−1)
∣

∣

v
= 0.(4.14)

In what follows, for F (t) ∈ Cv[[u]] we write

F (t) := ov(1), if lim
t
v−→t0

F (t) = 0.
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In view of [Si1, Lemma I.5.1], we have

B2

(

log |w(t)|v
log |ψ(t)|v

)

log
∣

∣ψ(t)
∣

∣

v

=
log2 |w(t)|v
log |ψ(t)|v − log |w(t)|v+ 1

6
log
∣

∣ψ(t)
∣

∣

v

=
m2

N
log |u(t)|v+ m

N 2 log

( |α|2Nv
|β|mv

)

− log |α|v

−m log
∣

∣u(t)
∣

∣

v
+

log |β|v
6

+
N

6
log
∣

∣u(t)
∣

∣

v
+ ov(1).

(4.15)

Using equations (4.14) and (4.15), equation (4.13) yields

λ̂Et,v(Pt)+
1
2

(

m2

N
−m+

N

6
+2k

)

log |u(t)|v

=−1
2

(

m

N 2 log

( |α|2Nv
|β|mv

)

− log |α|v+ log |β|v
6

)

− log |γ|v+ ov(1).
(4.16)

Finally, notice that [Si2, Theorem VI.4.2] implies

λ̂E,ordt0
(P ) = ordt0(1−w)+

1
2
B2

(

ordt0w
ordt0ψ

)

ordt0ψ =
1
2

(

m2

N
−m+

N

6
+2k

)

.

Therefore

VP,t0,v
(

t0
)

= lim
t
v−→t0

VP,t0,v(t)

=−1
2

(

m

N 2 log

( |α|2Nv
|β|mv

)

− log |α|v+ log |β|v
6

)

− log |γ|v
= log

∣

∣x
(

t0
)∣

∣

v
,

where x(t0) =
βm

2/2N2−1/2

γαm/N−1/2 belongs to a finite extension of K , denoted by L. �

Proof of Proposition 4.3. By [Si3, Lemma II.2.2] there is a finite map of
smooth projective curves B′ → B such that if E′ → B′ is a minimal model for
E×B B′, then E′ has semi-stable reduction over the singular fibers of E → B.
Moreover, we may choose B′ so that everything is defined over K. Thus, by
Lemma 4.4 and using the product formula, we may assume that the singular fibers
of our elliptic surface E→ B have multiplicative reduction.

For all t ∈ B(K) for which Et is smooth, we know from Proposition 4.2 that
hP (t) = ĥEt(Pt). The canonical height is always non-negative, so we may con-
clude that hP (t)≥ 0 for all such t.

Assume now that t0 ∈B(K) has a fiber with multiplicative reduction. Enlarg-
ing the number field K if necessary we may assume that t0 ∈ B(K) and that its
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corresponding x(t0) defined in the statement of Lemma 4.5 is in K∗. Then, on us-
ing the product formula, Lemma 4.5 implies that hP (t0) = 0. This completes the
proof. �

4.3. Proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Let LP be the line bundle on B induced from the di-
visor DE(P ). From Theorem 4.1, we know that its m-th tensor power can be
equipped with a continuous, adelic, semipositive metric, so that the correspond-
ing height function is (a multiple of) the canonical height ĥEt(Pt) on the smooth
fibers. Thus, by pulling back the metric to LP , we obtain a continuous, semipos-
itive, adelic metric on LP inducing a height function hLP which is precisely the
function hP defined in (4.1).

It remains to show that this height hP satisfies hP (B) = 0. This is a conse-
quence of Propositions 4.2 and 4.3 and Zhang’s inequalities on successive minima
[Zh2]. Indeed, from Proposition 4.3, we know that hP (t)≥ 0 for all t ∈B(K). In
addition, since ĥE(P ) �= 0, we know that there are infinitely many t ∈ B(K) for
which

ĥEt
(

Pt
)

= 0.

(For a complex-dynamical proof, see [De1, Proposition 1.5, Proposition 2.3].)
Therefore, from Proposition 4.2, we may deduce that the essential minimum of
hP on B is equal to 0. Finally, from [Zh2, Theorem 1.10], we may conclude that
hP (B) = 0. �

Proof of Corollary 1.2. When combined with the equidistribution theorems of
Yuan and Thuillier [Y, Th], we immediately obtain the corollary from Theorem
1.1. The measures μP,v are the curvature distributions associated to the metrics
‖ · ‖v at each place v. From the definition of the metric in Section 4.1, we see that
they are given locally by

μP,v = ddcVP,t0,v(t)

in a v-adic neighborhood of any point t0 ∈B(K), and for any choice of uniformizer
u at t0. �

5. Proof of Theorem 1.4.

5.1. Reduction to the case of a fiber product of elliptic surfaces. We first
show that, to prove the theorem, it suffices to prove the result for sections of the
fiber product A = E1×B · · · ×B Em of m ≥ 2 elliptic surfaces Ei → B over the
same base, and to assume that the line bundle L is generated by the divisor
{

OE1

}×E2×·· ·Em+E1×{OE2

}×·· ·×Em+ · · ·+E1×E2×·· ·×
{

OEm
}

.
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Let B be a quasiprojective smooth algebraic curve defined over Q. Suppose
A→ B is family of abelian varieties defined over Q that is isogenous to a fibered
product of m ≥ 2 elliptic curves. That is, there is a branched cover B′ → B and
m≥ 2 elliptic surfaces Ei→ B′ that give rise to an isogeny

E1×B′ · · ·×B′ Em −→A

overB′. Now letL be a line bundle onAwhich restricts to an ample and symmetric
line bundle on each fiber At for t ∈ B. Then the line bundle L pulls back to a line
bundle L′ on E1×B′ · · ·×B′ Em, and it again restricts to an ample and symmetric
line bundle on each fiber over t ∈B′.

Now suppose that we have a section P : B → A. The section P pulls back
to a section P ′ : B′ → A, and this in turn pulls back to a (possibly multi-valued)
section ofE1×B′ · · ·×B′Em. If multi-valued, we can perform a base change again,
passing to a branched cover B′′ → B′, so that the induced section P ′′ : B′′ →
E1×B′′ · · · ×B′′ Em is well defined. By definition, the assumption that P is non-
special on A means that it is non-special as a section of E1×B′′ · · ·×B′′ Em.

Finally, we observe that the conclusion of Theorem 1.4 does not depend on
the choice of line bundle. (We thank Joe Silverman for his help with this argu-
ment.) Recall that, on any abelian variety A defined over Q, the notion of a “small
sequence” of points is independent of the choice of ample and symmetric line bun-
dle. That is, if we take two ample and symmetric divisors D1 and D2, then we
know that there exists an integer m1 > 0 so that m1D1−D2 is ample; similarly
there exists m2 > 0 so that m2D2−D1 is ample. It follows from properties of the
Weil height machine that the heights hD1 and hD2 will then satisfy

1
m1

hD2 +C1 ≤ hD1 ≤m2hD2 +C2

for real constants C1,C2. Upon passing to the canonical height, we conclude that

1
m1

ĥD2 ≤ ĥD1 ≤m2 ĥD2(5.1)

on the abelian variety. In particular, ĥD1(ai)→ 0 for some sequence inA(Q) if and
only if ĥD2(ai)→ 0. Now suppose we have a family of abelian varieties A→ B.
Two line bundles L1 and L2 associated to relatively ample and symmetric divi-
sors induce canonical heights ĥL1,t and ĥL2,t on each fiber At. But recalling that
ampleness persists on Zariski open sets [La3, Theorem 1.2.17], there exist posi-
tive integers m1 and m2 so that the line bundles Lm1

1 ⊗L−1
2 and Lm2

2 ⊗L−1
1 are

relatively ample on a Zariski open subset of the base B. Passing to the canonical
heights once again, we find that the relation (5.1) holds uniformly over B (after
possibly excluding finitely many points). Therefore, for any section P : B → A,
there exists a positive constant c(L1,P ) of Theorem 1.4 for the height ĥL1 if and
only if it there exists such a constant c(L2,P ) for ĥL2 .
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5.2. Proof for a fiber product of elliptic curves. Fix integer m ≥ 2, and
letEi→B for i= 1, . . . ,m be elliptic surfaces over the same base curve B, defined
over Q. LetA=E1×B · · ·×BEm, and letL be the line bundle onE1×B · · ·×BEm
associated to the divisor

D =
{

OE1

}×E2×·· ·Em+E1×
{

OE2

}×·· ·×Em+ · · ·+E1

×E2×·· ·×
{

OEm
}

.

For all but finitely many t∈B(Q), the canonical height ĥLt on the fiberAt is easily
seen to be the sum of canonical heights (see, e.g., [HS] for properties of the height
functions), so that

ĥLt =
m
∑

i=1

ĥEi,t .

Now assume that P = (P1, . . . ,Pm) is a section of A→ B. Define

ĥi(t) := ĥEi,t
(

Pi,t
)

for i = 1, . . . ,m and for all t ∈ B(Q) where all Ei,t are smooth elliptic curves.
Suppose there exists an infinite sequence {tn} ⊂B(Q) for which

ĥi(tn)→ 0 for all i= 1, . . . ,m(5.2)

as n→ ∞. We will prove that for every pair (i,j), there exists an infinite sequence
{sn} ⊂B(Q) so that

ĥi
(

sn
)

= ĥj
(

sn
)

= 0

for all n. In this way, we reduce our problem to the main results of [MZ2, MZ3]
which imply that the pair (Pi,Pj) must be a special section of Ei×B Ej . Finally,
we observe that our definition of a special section P = (P1,P2, . . . ,Pm) is equiv-
alent to the statement that every pair (Pi,Pj) is special. Therefore, for any non-
special section P , we can conclude that there exists a constant c= c(P )> 0 so that
the set

{

t ∈B(Q) : ĥLt
(

Pt
)

< c
}

is finite.
Fix a pair (i,j). First assume that neither Ei nor Ej is isotrivial. If Pi or Pj is

torsion, then the section (Pi,Pj) is special. Otherwise, we have ĥEi(Pi) �= 0 and
ĥEj(Pj) �= 0, and we may apply Theorem 1.1 to deduce that the height functions
ĥi and ĥj are “good” on B. More precisely, we let Mi and Mj be the adelically
metrized line bundles on the base curve B associated to the height functions ĥi and
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ĥj , from Theorem 1.1. They are both equipped with continuous adelic metrics of
non-negative curvature. By assumption, we have

ĥi
(

tn
)−→ 0 and ĥj

(

tn
)−→ 0(5.3)

as n → ∞. Therefore, we may apply the observation of Chambert-Loir [CL2,
Proposition 3.4.2], which builds upon on Zhang’s inequalities [Zh2], to conclude
that there exist integers ni and nj so that Mi

ni and Mj
nj are isomorphic as line

bundles on B and their metrics are scalar multiples of one another. It follows that
the height functions ĥi and ĥj are the same, up to scale, and in particular they have
the same zero sets. In other words, Pi,t is a torsion point on Ei,t if and only if Pj,t
is a torsion point on Ej,t (for all but finitely many t in B), and there are infinitely
many such parameters t ∈B(Q).

Now suppose that Ei is isotrivial. The existence of the small sequence tn in
(5.3) implies that either ĥEi(Pi) �= 0 or Pi is torsion on Ei, and furthermore, if Pi
is torsion, then it follows that (Pi,Pj) is a special section of Ei×BEj . Similarly if
Ej is isotrivial. In other words, the existence of the sequence tn in (5.3) allows us
to conclude that either (Pi,Pj) is a special pair, or we have that both ĥEi(Pi) �= 0
and ĥEj (Pj) �= 0. Therefore, we may proceed as above in the non-isotrivial case,
applying Theorem 1.1 to deduce that the heights ĥi and ĥj coincide, up to scale,
and in particular there are infinitely many parameters s ∈B(Q) where

ĥi(s) = ĥj(s) = 0.

This concludes the proof of Theorem 1.4.

6. Variation of canonical height, illustrated. In this final section, we pro-
vide a few illustrations of the distributions μP,v arising in Corollary 1.2, for an
archimedean place v. In Proposition 6.2, we present a complex-dynamical proof
that the archimedean measures μP,v will have support equal to all of B.

6.1. Images. Given E→B and section P , we plot the parameters t where
Pt is a torsion point on the fiber Et of specified order. As proved in Corollary 1.2,
the local height function at each place

t �−→ λ̂Et,v
(

Pt
)

determines the distribution of the torsion parameters; it is a potential for the mea-
sure μP,v (away from the singularities). Recall that if we have two sections P and
Q that are linearly related on E, then the distributions of their torsion parameters
in B will be the same.
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Figure 1. At top, Silverman’s example from [Si1, Theorem I.0.3], withEt = {y2+xy/t+
y/t= x3 +2x2/t} and Pt = (0,0), shown in the region {−2≤ Ret≤ 1, −1≤ Imt≤ 1}.
The singular fibers occur at t = 0,−2/27,−1, and one sees the effects of numerical error
in a small neighborhood of these parameters. At bottom, torsion parameters for section P
having x-coordinate x(Pt) =−1/4 for all t.

Figure 1, top, illustrates the example of Silverman from [Si1, Theorem I.0.3].
Here, we have

Et =
{

y2 +xy/t+y/t= x3 +2x2/t
}

with B = P
1 and Pt = (0,0) in (x,y)-coordinates. Plotted are the torsion param-

eters of orders 2n for all n ≤ 8; that is, the points t in the base B where Pt is
torsion of order 2n on the fiber Et. Roughly, a smaller dot corresponds to higher
order of torsion. Figure 1, bottom, is another section of the same family, where the
x-coordinate of Pt is constant and equal to −1/4. (Strictly speaking, this second
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Figure 2. Torsion parameters for sections of the Legendre family, studied in [MZ1]; here,
B = P1 and Et = {y2 = x(x− 1)(x− t)}. At left, the section P2 with x((P2)t) = 2 for
all t; at right, the section P5 with x((P5)t) = 5 for all t. Both are shown in the region
{−3≤ Ret≤ 5, −4≤ Imt≤ 4}.

P is not a section of our given E → P
1, because the y-coordinate will not lie in

K(B) � Q(t) but in an extension; however, the property of being torsion and the
determination of its order is independent of which point in the fiber we choose.)
Observe the distinctly different pattern of dots in the first and second pictures, es-
pecially in the left half of the two pictures, illustrating the linear independence in
E(k) of the two sections.

Figure 2 illustrates the torsion parameters for two independent sections of the
Legendre family,

Et =
{

y2 = x(x−1)(x− t)}

over B = P
1, studied in [MZ1]. The chosen sections are P2, with constant x-

coordinate equal to 2, and P5, with constant x-coordinate equal to 5. As in Figure
1, we plot the torsion parameters of orders 2n for all n ≤ 8; generally, a smaller
dot signifies higher order of torsion. It was proved in [DWY] that the limiting
distributions for sections with constant x-coordinate satisfy μPx,∞ = μPx′ ,∞ (at an
archimedean place) if and only if x= x′. It was proved in [St] and [Ma] that there
are no t ∈ P1(K) for which both (P2)t and (P5)t are torsion on Et. Again, observe
the difference in the geometry of the dots for the two independent sections.

Figure 3 illustrates our equidistribution result, Corollary 1.2, for the example
of the Legendre family with the section P5. Plotted are the torsion parameters of
orders 2n with (a) n ≤ 6, (b) n ≤ 8, and (c) n ≤ 10. Observe how the dots fill in
the “grid structure” in the base curve B, exactly as do the torsion points for one
elliptic curve.
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Figure 3. Illustrating equidistribution: Torsion parameters of increasing orders for a sec-
tion of the Legendre family, with B = P1 and Et = {y2 = x(x− 1)(x− t)} and P5 as in
Figure 2. At top, torsion parameters of orders 2n for n≤ 6; bottom left, of orders 2n for
n≤ 8, and bottom right, of orders 2n for n≤ 10.

Remark 6.1. As mentioned above, the smaller dots in the illustrations cor-
respond, roughly, to higher orders of torsion. These images are produced with a
standard escape-rate algorithm. We use the dynamical system ft on P

1, induced
from multiplication by 2 on the elliptic curve Et from Section 3, line (3.1). The
coordinates on P

1 are chosen so that ∞ is the image of the 0 of Et. We mark t if
|fnt (π(Pt))| ≥ 10000 for some n≤ 8.

6.2. Density of torsion parameters. In all of these examples, the dots will
fill in the picture as the order of torsion grows, and the support of the measures μP,v
is equal to B(C). In fact, this will always be the case, for any (nontrivial) section
of a complex elliptic surface, as our final result, Proposition 6.2, shows.
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Let E → B be an elliptic surface over a projective curve B, defined over C,
and let P : B → E be a section for which ĥE(P ) �= 0 (over the function field
k = C(B)). Let μP be the measure on B defined as in Proposition 3.6, that is
as the pullback of the current T that restricts to Haar measure on each smooth
fiber. In other words, μP is locally defined as the Laplacian of the function GP (t)
introduced in Proposition 3.4, which is well defined when working over C.

PROPOSITION 6.2. Let E→ B be an elliptic surface over a projective curve
B, defined over C, and let P : B→E be a section for which ĥE(P ) �= 0 (over the
function field k = C(B)). Then the set

{

t ∈B : Pt is torsion on Et
}

is dense in B(C) and

suppμP =B(C).

We give a complex-dynamical proof, viewing Proposition 6.2 as a consequence
of the main result of [De1]. (We do not use the equidistribution result, Corollary
1.2.) An analytic proof is also presented in [Za, Notes to Chapter 3].

Proof. Let B∗ ⊂B be a finitely-punctured Riemann surface such that the fiber
Et is smooth for all t ∈ B∗. Let πt : Et → P

1 be the degree-two projection and
ft : P1→ P

1 be the rational map induced by multiplication-by-2 on Et, as defined
in the introduction to Section 3. It is well known that the holomorphic family {ft :
t ∈ B∗} is structurally stable; see, e.g., [Mc, Chapter 4]. Thus, over any simply-
connected subset U of B∗, there is a holomorphic motion of the periodic points of
ft which extends uniquely to a holomorphic motion of all of P1, conjugating the
dynamics.

The key observation is that μP is precisely the “bifurcation measure” of the
pair (f,P ) on B∗. See [De2, Section 2.7] and [De1] for definitions. The support of
μP is equal to the bifurcation locus of (f,P ); in particular, the parameters t ∈ B∗
for which πt(Pt) is preperiodic for ft are dense in suppμP . Therefore, it suffices
to show that suppμP =B.

Suppose to the contrary that there is an open disk U ⊂B∗ for which μP (U) =

0. Then the pair (f,P ) is stable on U , and therefore πt(Pt) cannot be a repelling
periodic point for any t ∈ U . From the uniqueness of the holomorphic motion,
it follows that t �→ πt(Pt) is part of the holomorphic motion on U . By analytic
continuation, then, we deduce that πt(Pt) must follow the motion of a point over
all of B∗. This implies that the pair (f,P ) is stable throughout B∗ and the measure
μP is 0. But this is absurd by the assumption that ĥE(P ) �= 0; see [De1, Theorem
1.1]. �
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