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MASS FORMULA AND OORT’S CONJECTURE FOR SUPERSINGULAR
ABELIAN THREEFOLDS

VALENTIJN KAREMAKER, FUETARO YOBUKO, AND CHIA-FU YU

ABSTRACT. Using the theory of polarised flag type quotients, we determine mass formulae for
all principally polarised supersingular abelian threefolds defined over an algebraically closed
field k of characteristic p. We combine these results with computations of the automorphism
groups to study Oort’s conjecture; we prove that every generic three-dimensional principally po-
larised supersingular abelian variety over k of characteristic # 2 has automorphism group {+1}.

1. INTRODUCTION

Throughout the paper, let p be a prime number, and let £ be an algebraically closed field of
characteristic p. An abelian variety X over k is said to be supersingular if it is isogenous to a
product of supersingular elliptic curves; it is called superspecial if it is isomorphic to a product
of supersingular elliptic curves. To each polarised supersingular abelian variety z = (X, A¢)
of p-power polarisation degree, we associate a set A, of isomorphism classes of p-power degree
polarised abelian varieties (X, \) over k, consisting of those whose associated quasi-polarised
p-divisible groups satisfy (X, \)[p>] ~ (X, Ao)[p>°]. It is known that A, is a finite set, and the
mass of A, is defined to be the weighted sum

1
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If x = (X, \o) is a g-dimensional principally polarised superspecial abelian variety, then
A, coincides with the set A, of isomorphism classes of all principally polarised superspe-
cial abelian varieties, called the principal genus. The classical mass formula (see Hashimoto-
Ibukiyama [5, Proposition 9] and Ekedahl [2, p. 159]) states that

{Hél—% }~f[1{(pi+(—

where ((s) denotes the Riemann zeta function.

More generally, for any integer ¢ with 0 < ¢ < |g/2], let A, denote the finite set of
isomorphism classes of g-dimensional polarised superspecial abelian varieties (X, A) such that
ker(\) ~ aff, where «, is kernel of the Frobenius morphism on the additive group G,. Then
one also has A, ,c = A, for any member = in A, ,.. The case ¢ = [g/2] is called the non-
principal genus. As shown by Li-Oort [12], both the principal and non-principal genera de-
scribe the irreducible components of the Siegel supersingular locus .7, ; C 7, ® F,, where
a7, is the moduli space of g-dimensional principally polarised abelian varieties. Slmllarly, the
sets A\, - describe the supersingular Ekedahl-Oort (EO) strata in .27, ® Fp, cf. [3]. The explicit
determination of the class number |A |, i.e., the class number problem, is a very difficult task
for large g, and is still open for ¢ = 3 and ¢ = 1. Nevertheless, an explicit calculation of the
mass Mass(A, ,c) is more accessible and provides a good estimate for the class number. This
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mass was calculated explicitly by the third author [21, Theorem 1.4] when g = 2¢ and extended
to arbitrary ¢g and c by Harashita [3, Proposition 3.5.2].

In [7], Ibukiyama resumes his earlier unpublished results of non-equivalent principal polar-
isations of a supersingular abelian surface X,. He explicitly computes the number of polari-
sations and the mass of the principally polarised surfaces, and shows the agreement with |A,|
and Mass(A,), respectively, for a member x = (Xy, Ag) in S2;. As a surprising arithmetic
application, Ibukiyama proved Oort’s conjecture that the automorphism group of any generic
member is C, for g = 2 and p > 3, and he gave a counterexample for g = 2 and p = 2.

Inspired by Ibukiyama’s work, in this paper we explore the possibility of explicit determina-
tion of Mass(A,) when g = 3, with similar arithmetic applications in mind. To describe our
results, we need some notation; more details wil be given in Sections 2 and 3.

For any abelian variety X over k, the a-number of X is a(X) := dimyHom(«,, X). For
abelian threefolds X we have a(X) € {1,2,3}; when computing the mass, we will separate
into cases based on the a-number.

Further let F be a supersingular elliptic curve over F,» with Frobenius endomorphism 7g =

—p,andlet B = E®g , k. For each integer c with 0 < ¢ < [g/2, we denote by P (E3) the set
of polarisations 4 on E3 such that kerp =~ a2; one has P,c(E®) = P,.(E®). As superspecial

abelian threefolds are unique up to isomorphism, there is a natural bijection P (E3) o~ A .

Let i be a polarisation in P; (Eg) As alluded to above, Li and Oort [12] show there is a one-
to-one natural correspondence between the set P;(E£3) and the set ¥(.% 1) of (geometrically)
irreducible components of .3 ;. More precisely, they consider the moduli space &, (resp. ;)
over [ of three-dimensional (resp. rigid) polarised flag type quotients with respect to . This
space is an irreducible scheme which comes with a proper projection morphism pr, : &, —
%5 1, such that for each principally polarised supersingular abelian threefold (XX, \) there exists
au e Pl(Fs) anday € &, such that pry(y) = [(X, )] € S;.

Let C' C P? be the Fermat curve of degree p + 1 defined by the equation X7 + XP*' 4
X+ = 0. There exists a structure morphism 7 : &2, ~ P (0(—1) @ €(1)) — C that has a
sections : C — T C 2, giving &, the structure of a P!-bundle over C, cf. [12, Section
9.4] and Definition 3.10. In particular, for each choice of yx and (X, \), corresponding to a
y € P, there exists a unique pair (¢, u) where t = (t1 : to : t3) € C(k) and u = (uy : ug) €
n1(t) ~ P}(k) that characterises it. Moreover, we have (cf. Proposition 3.11):

(1) If y € T then a(X) = 3;

(2) For any t € C(k), we have t € C(F,2) if and only if for any y € 7 '(¢) the corre-
sponding threefold X has a(X) > 2.

(3) We have a(X) = lifand onlyif y ¢ T"and 7(y) ¢ C(F,2).

We are now ready to state our first two main results, computing the mass for any principally
polarised supersingular abelian threefold.

Theorem A. (Theorem 4.3) Let v = (X, )\) € S31(k) with a(X) > 2, let p € Pi(E?), and
let y € P (k) be such that pro(y) = [(X, \)]. Write y = (t,u) where t = w(y) € C(F2) and
u e m 1 (t) = Pl(k). Then

Ly

Mass(Ae) = 555 30 5.7
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where

=D+ —1) ifu € P{(Fye);
Ly={®-DE+ 1)@ - D' - if u € Pi(Fp) \ Py (IF2);
27V (p-1)(p" + D* ~ DP*(p' = 1) ifu g PH(Fp);
where e(p) = 0ifp=2and e(p) = 1ifp > 2.

Theorem B. (Theorem 5.21) Let x = (X, \) € %3 such that o(X) = 1. For p € PY(E?),
consider the associated element y € 2, which is characterised by the pair (t,u) with t €
C(k)\ C(F,2) and u € P} (k). Let D, be as in Definition 5.16, and let d(t) be as in Defini-
tion 5.12. Then

3

_ P°Ly
Mass(Aa) = 553757

where

27 (p? —1)(p* = 1)(p° = 1) ifu ¢ Dy
Ly =4 p*(p—1)(p" - 1)(p* - 1) ift ¢ C(Fys) andu € Dy;
P’ =1 -1 - 1) ift € C(Fy) andu € Di.

Our computations of the automorphism groups can be summarised as follows.

Theorem C. Let x = (X,\) € %1(k) and u € Pi(E?®). Consider the associated element
y € P, which is characterised by the pair (t,u) with t € C(k) and u € P; (k). Let D, be as in
Definition 5.16 and let d(t) be as in Definition 5.12.

(1) (Theorem 7.3.) Suppose that a(X) = 1, so that t € C(k)\ C(F,2). Assume that

(t,u) & D, that is, u & D;.
(@) If p =2, then Aut(X, \) ~ C5.
(b) If p > 5, orp = 3 and d(t) = 6, then Aut(X, \) ~ Cs.
(2) (Theorem 7.8.) Suppose that a(X) = 1 and that (t,u) € D witht & C(F ).
(@) If p =2, then Aut(X, \) ~ C3 x Cs.
(b) If p =3 and d(t) = 6, then Aut(X, \) € {Cy, Cy}.
(c) Forp > 5, we have the following cases:
(i) If p=—1 (mod 4), then Aut(X,\) € {Cy, Cy}.
(i) If p= —1 (mod 3), then Aut(X, \) € {Cy, Cg}.
(i) If p=1 (mod 12), then Aut(X,\) ~ Cj.

(3) (Proposition 7.11.) Let A31(Cs) = {(X,\) € As; @ Aut(X,\) ~ Cy} be the set
of superspecial principally polarised abelian threefolds satisfying Oort’s conjecture.
Then

[A3,1(Ch)|

—1 asp— oo.
[ Azl

In particular, Part (1) of Theorem C shows that Oort’s conjecture is true precisely for p # 2.
That is, every generic principally polarised supersingular abelian threefold over £ of character-
istic # 2 has automorphism group Cs.

The organisation of the paper is as follows. Sections 2 and 3 contain preliminaries, respec-
tively on mass formulae and the structure of the supersingular locus %3 ;. In particular, the
strategy we will follow in later sections to obtain mass formulae is outlined at the end of Sec-
tion 2. Sections 4 and 5 determine the mass formulae for supersingular abelian threefolds X,

respectively with a(X) = 2 (cf. Theorem A) and a(X) = 1 (cf. Theorem B). Section 6 is an
3



independent section which considers in more detail a set-theoretic intersection arising in Sec-
tion 5. The automorphism groups, as well as the implications for Oort’s conjecture, are studied
in Section 7 (cf. Theorem C).
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2. MASS FORMULAE FOR SUPERSINGULAR ABELIAN VARIETIES

2.1. Set-up and notation.

Throughout the paper, let p be a prime number, let g be a positive integer, and let k£ be an
algebraically closed field of characteristic p. The ground field for objects studied is k, unless
stated otherwise.

For a finite set S, write | S| for the cardinality of S. Let «, be the unique a-group of order p
over IF,; it is defined to be the kernel of the Frobenius morphism on the additive group G, over
F,. For a matrix A = (a;;) € Mat,,x,(k) and integer r, write A®") := (af;) for the image of
A under the rth Frobenius map. Denote by 7 = 11, Z, the profinite completion of Z and by
Ay = 7 ®z Q the finite adele ring of Q.

Definition 2.1. For any integer d > 1, let ¢/, 4 denote the (coarse) moduli space over I, of
g-dimensional polarised abelian varieties (X, \) with polarisation degree deg A\ = d?. For any
m > 1, let S, ,m be the supersingular locus of .27, ,~, which consists of all polarised supersin-
gular abelian varieties in <7 ,». Then ., is the moduli space of g-dimensional principally
polarised supersingular abelian varieties. Denote .7 « = Up,>15 pm.

Definition 2.2. (1) If S is a finite set of objects with finite automorphism groups in a specified
category, then we define the mass of S to be the weighted sum

1
Mass(S) := ; TAut(s)]

(2) For any = = (Xo, \g) € -7, +(k), we define
3) A ={(X, A) € e (B) = (X, M[p™] == (Xo, Ao) [p™T},

where (X, \)[p™] denotes the polarised p-divisible group associated to (X, ). Then A, is a
finite set; see [20, Theorem 2.1]. The mass of A, is defined as

1
Mass(A,) = > oot
ass(Az) [Aut(X, )]
(X,N)EAL
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2.2. Superspecial mass formulae.
Recall that a superspecial abelian variety over k is an abelian variety isomorphic to a product
of supersingular elliptic curves.

Definition 2.3. Let 0 < ¢ < | g/2]| be an integer. We define A, , to be the set of isomorphism
classes of g-dimensional superspecial polarised abelian varieties (X, A) whose polarisation A
satisfies ker(\) ~ a2°. Its mass is

1
Mass(Aorr) = D Tl

(X,AN)EAG e

If x = (X, ) is any member in A, ,c, then we have A, = A, ,c (cf. Definition 2.2). In
particular, Mass(A, ) is a special case of Mass(A,). Note that the p-divisible group of a
superspecial abelian variety of given dimension is unique up to isomorphism. Furthermore,
the polarised p-divisible group associated to any member in A, is unique up to isomorphism,
cf. [12, Proposition 6.1].

Theorem 2.4. (1) Forany g > 1, we have

—1)9(g+D)/2 9 g _
Mass(Ag) = TP T - 20) - [T + (1))

i=1 i=1
(2) Forany g > 1and 0 < ¢ < |g/2], we have

—1)9lgtn/2 9 9—2¢ e
Mass(Ag pe) :% H ¢(1—2i) - H ' + (—1)) - H(p4z—2 _1)
=1 i=1 i=1
P -1

[T = DTS % - 1)
Proof. (1) See [2, p. 159] and [5, Proposition 9]. (2) This follows from [3, Proposition 3.5.2]
by the functional equation for ((s). See also [21] for a geometric proof in the case where
g = 2c. U

Using the fact that ((—1) = —1/12,{(—3) = 1/120 and {(—5) = —1/(42 - 6), we obtain
the following corollary.
Corollary 2.5. Let g = 3.
(1) If ¢ = 0, then Ay ,c = A3 consists of all principally polarised superspecial abelian
threefolds, and
(r—DE*+ 1)@’ 1)
4 Mass(Asz ;) = 510 31 5. 7 )
(2) If ¢ = 1, then Ay ,e = A3, consists of all polarised superspecial abelian threefolds
whose polarisation X has ker(\) ~ o, X «, and

-+ HE°-1)
(5) Mass(As ) = 510 . 345, 7 )
2.3. From superspecial to supersingular mass formulae.
For a (not necessary principally) polarised supersingular abelian variety © = (Xj, Ag) over
k, let G, be the automorphism group scheme over Z associated to x ; for any commutative ring
R, the group of its [2-valued points is defined by

(6) G.(R) = {g € (End(Xy) ®z R)* : ¢ Xog = Xo}.
5



Definition 2.6. For a connected reductive group G over QQ with finite arithmetic subgroups and
an open compact subgroup U C G/(Ay), we define its (arithmetic) mass Mass(G, U) by

h
1

Mass(G,U) = Z T I :=GQnNnagUct,
i=1 17

where {ci, - -+, ¢} is a set of representatives for the double coset space G(Q)\G(Ay)/U.

Proposition 2.7. For any object v = (Xo, \g) € Sy p+(k), there is a natural bijection of pointed
sets

Ay = Go(Q\Ga(Ay)/G.(Z).

Moreover, if (X, \) is a member of A, which corresponds to the class [c| under the bijection,
then Aut(X, \) ~ G,(Q) N cG.(Z)c™ . In particular, we have

Mass(A,) = Mass(G,, Gx(i)),
cf. Definition 2.2.
Proof. See [23, Theorems 2.2 and 4.6]. Also see [25, Proposition 2.1] for a proof sketch. [

Definition 2.8. Let Uy, U, be two open compact subgroups of G, (Af). Then we define

[Ul . U1 N UQ]
[UQ . U1 N UQ]

Interpreting the mass from Definition 2.6 as the volume of a fundamental domain, with
notation as above, we have the following lemma.

w(U1/Uz) =

Lemma 2.9. Let Uy, U, be two open compact subgroups of G, (Ay). Then their (arithmetic)
masses compare as

Mass(G,, Us) = u(Uy /Us)Mass(G,, Uy ).

Lemma 2.10. Let X be a supersingular abelian variety over k. Then there exists a pair (Y, @),
where Y is a superspecial abelian variety and ¢ : Y — X is an isogeny such that for any pair
(Y, ') as above there exists a unique isogeny p : Y' — Y such that ¢’ = ¢ o p.

Dually, there exists a pair (Z,~), where Z is a superspecial abelian variety and v : X — Z
such that for any pair (Z',~') as above there exists a unique isogeny p : Z — Z' such that

Y =por.
Proof. See [12, Lemma 1.8]; also see [22, Corollary 4.3] for an independent proof. The proof
of [12, Lemma 1.8] contains a gap; see Remark 3.13 for a counterexample to the argument. [

Definition 2.11. Let X be a supersingular abelian variety over k. We call the pair (Y, ¢ : Y —
X) or the pair (Z,v : X — Z) as in Lemma 2.10 the minimal isogeny of X.

Proposition 2.12. Let v = (X, \) € .7, «(k) and let ¢ : X — X be the minimal isogeny
of X. Putz = (X, \), where X\ := @*\. Let (M, (,)),(M,(,)) denote the quasi-polarised
(contravariant) Dieudonné module of X, X, respectively. Then ¢ induces an injective map

©* : End(X [p™]) — End(X[p>]), or equivalently ¢* : End(M) — End(M), and we have
Mass(A,) = [Aut((X, N)[p™]) : Aut((X, A)[p™])] - Mass(Az)

@) —
= [Aut(M, (,)) : Aut(M, (,))] - Mass(Az).

Here the injective map ©* yields the inclusion map Aut(M, (,)) C Aut(M, (,)).
6



Proof. This may be regarded as a refinement of [20, Theorem 2.7]. Through the isogeny ¢, we

may view G3(Z) and ¢*G,(Z) as open compact subgroups of the same group Gz(Ay). Using
Proposition 2.7 and Lemma 2.9, we see that

Mass(A,) = pu(G5(Z)/¢* G (Z))Mass(Az)

G=(Z) : G=(Z )ﬁ<P*G (Z)

(Z

/ ) Mass(Az).
0" Go(Z) : G3(Z) N ¢*Gal(Z))

Note that Gz(Z ) and ¢*G, ( ) differ only at p. By [22, Proposition 4.8], every endomor-
phism of X [p>] lifts uniquely to an endomorphism of X[p>]. This shows the injectivity of
the map ¢* : End(X[p>]) — End(X [p>]). Therefore, we have the inclusion G(Z,) =
Aut((X, \)[p™]) = Gz(Z,) = Aut((X, N)[p™]) via ¢* and find the first part of Equation (7).
By Dieudonné module theory, for any polarised supersingular abelian variety (X, \) with
quasi-polarised Dieudonné module (M, (, )), we may identify Aut((X, \)[p>]) with Aut(M, (,)).
This yields Equation (7). U

To summarise, the results of this section provide the following strategy for obtaining a mass
formula for any principally polarised supersingular abelian variety:

(a) For any supersingular abelian variety x = (X, \), construct the minimal isogeny
¢ : (X,)) = (X, \) from a suitable superspecial abelian variety 7 = (X, \).
(b) Use Theorem 2.4 (or Corollary 2.5 if g = 3) to compute Mass(Az).
(c) Compute the local index [Aut(M, (,)) : Aut((M, (,))], cf. (7).
(d) Compute Mass(A,), i.e., compare Mass(Az) and Mass(A,) by applying Proposition 2.12.

We will carry out these steps, in particular Step (c), in the next sections in the case where
g = 3. In the next section, we start by studying in detail the moduli space .5 ; of supersingular
principally polarised abelian threefolds and the minimal isogenies (cf. Definition 2.11) between
threefolds.

3. STRUCTURE OF THE SUPERSINGULAR LOCUS %54

In this section we describe the supersingular locus .5 ;. The structure will be used to deter-
mine the minimal isogenies, cf. Proposition 3.12. Finer structures will be introduced in order
to compute the local index in Step (c) in the previous section.

3.1. The moduli space .”5 ;.

To describe the moduli space .#5 ; of supersingular principally polarised abelian threefolds,
we will use the framework of polarised flag type quotients (for g = 3) as developed by Li and
Oort [12], which we will briefly describe below.

Let E/F > be a supersingular elliptic curve whose Frobenius endomorphism is 75 = —p
and denote E = E ®p , k. Let P(E®) = Pi(E°) (resp. P(E®) = Pi(E?)) be the set of
isomorphism classes of principal polarisations on E3 (resp. E*). Since every polarisation on
E3 is defined over F 2, we may identify P(FE3) with P(E®). Recall that an a-group of rank r
over an [F,-scheme S is a finite flat group scheme over S which is Zariski-locally isomorphic to
a,,. For a scheme X over S, put X ) ;= X xgp, S. where Fs : S — S denotes the absolute
Frobenius morphism on S.

Definition 3.1. (cf. [12, Section 3])



(1) For any u € P(E?®), a three-dimensional polarised flag type quotient (PFTQ) with
respect to 4 is a chain of polarised abelian threefolds over a base IF,,2-scheme S

(Y;7p0) : (3/27)\2) p_2> (Ylv)‘l) p_1> (%7)\0)7

such that:
(1) (3/27 )\2> = (Egap/i) XSpechg S;

(i) ker(p;) is an a-group of rank ¢ for 1 < i < 2;

(iii) ker(A;) C ker(V/ o F7) for0 < i < 2and 0 < j < [i/2], where F = Fy, /g :
Y; = Y and and V = V4,5 : Y;”) — Y, are the relative Frobenius and Ver-
schiebung morphisms, respectively.

In particular, )\ is a principal polarisation on Yj. An isomorphism of three-dimensional

polarised flag type quotients is a chain of isomorphisms («;)o<;<2 of polarised abelian

varieties such that ap = idy,,.

(2) A three-dimensional polarised flag type quotient (Y, p,) is said to be rigid if

ker(Ya — Y;) = ker(Ya — Yp) N Ya[F2 ] = ker(F2 7 : Yy » V¥ ), for1<i<2,

or equivalently if ker(p,) = ker(Yy — Yp) N Ys[F].
(3) Let &, (resp. ,@L) denote the moduli space over IF,> of three-dimensional (resp. rigid)
polarised flag type quotients with respect to fi.

Clearly, each member Y; of (Y, p) is a supersingular abelian threefold. According to [12,
Section 9.4], &, is a two-dimensional geometrically irreducible scheme over IF,.. The projec-
tion to the last member gives a proper F,-morphism

pry: P, — S,
(Yo = Y1 = Yo) = (Yo, Ao)-

Moreover, for each principally polarised supersingular abelian threefold (X, \) there exist a
p € P(E?) and a polarised flag type quotient y € 2, such that pry(y) = [(X, \)] € 1. Put
differently, it holds that the morphism

®) I 2.- .

HEP(E3)

is surjective and generically finite.

Roughly speaking, Equation (8) says that each &, approximates an irreducible component
of the supersingular locus .3 ;. More precisely, one can show the following structure results;
for more details, we refer to [12, Sections 9.3-9.4].

Let C' C IP? be the Fermat curve defined by the equation X”™ + X2 4 XP*! — 0,

Proposition 3.2. The Fermat curve C' can be interpreted as the classifying space of isogenies
(Y2, A2) — (Y1, A1) whose kernel is locally isomorphic to o.. Moreover, there is an isomor-
phism P, ~ Po(0(—1) @ O(1)) for which the structure morphism  : Po(0O(—1) & 0(1)) —
C corresponds to the forgetful map ((Ya, Aa) = (Y1, 1) — (Yo, Ao)) — (Y2, A2) — (Y1, A1)).

Proof. Let M be the polarised contravariant Dieudonné module of Y5. Choosing an isogeny p-
from E3 such that ker(py) ~ af) is equivalent to choosing a surjection of Dieudonné modules
M, — k2. Since Frobenius F and Verschiebung V act as zero on k2, this is further equivalent
to choosing a one-dimensional subspace of the three-dimensional (since a(Y2) = 3) k-vector
space M, /(F, V)M, which corresponds to a point (¢, : to : t3) € P? = P((My/(F,V)My)*).

8



The polarisation A\, = pu descends to a polarisation A\; on Y; through such p,, and the
condition ker(A;) C Y;[F] is equivalent to the condition

B+ 5 =0,

which describes the Fermat curve C of degree p + 1 in IP2. For precise computations, we refer
to [11].

Let M, be the polarised Dieudonné module of Y;: the polarisation \; induces a quasi-
polarisation D(\y): M} — M, and we regard M’ as an submodule of M, under this injection.
Choosing a second isogeny (Y1, A1) — (Yo, Ag) is equivalent to choosing a one-dimensional
subspace of the two-dimensional vector space M; /M,’. Thus each fibre of the structure mor-
phism 7: &, — C'is isomorphic to P((M; /M,’)*) ~ P! and this fibration corresponds to a
rank two vector bundle on C'. The canonical one-dimensional space (F, V)M, /M C M, /My
defines a section s of 7: &, — C and corresponds to a surjection & — €(—1). By the
duality of polarisations, we see that & is an extension of &/(—1) by ¢(1) and this extension
splits. U

Since the Fermat curve C' is a smooth plane curve of degree p + 1, its genus is equal to
p(p — 1)/2. Let U3(F,) € GL3(F,2) denote the unitary subgroup consisting of matrices A
such that AT A®) = ;. We see that for each A € U3(FF,) and ¢t € C, the matrix multiplication
A -t" lies in C. This gives a left action of Us(FF,,) on the curve C. It is known that |Us(F,,)| =

p’(p+1)p* - 1)(p* + 1).

Lemma 3.3. We have |C(F,2)| = p® + 1. Thus, it is F,2-maximal and hence F ,i-minimal.
Moreover, we have C(F2) = C(F,4). Furthermore, we have
2 4 L it2 i+l . .

&) |C(Fp2")| = {pzz‘ +pz’+2 pz’+1 o le l'S odd

pt—=p"t 40+ 1 ifuiseven.
Proof. Foreach t = (t;) € C(F,2), let s; = t""". Then s; € F, and s, + s + s3 = 0. So
there are p + 1 points (s;) in P*(F,). For each point (s;), there are p + 1 (resp. (p + 1)?) points
(t;) over (s;) if some of the s; are zero (resp. otherwise); there are 3 points (s;) with s; = 0 for
some 7. Thus,

[C(Fpe)l = (p+1-3)(p+1)*+3(p+1) =p°+ 1.

A curve is F 2x-maximal (resp. minimal) if its Frobenius eigenvalues over IF 2« all equal —pk
(resp. p¥). One checks that this means C'is [F,2-maximal. Hence, C' is F,s-minimal and satisfies
|C'(Fp)| = p* + 1. Since C is F2i-maximal (resp. F2i-minimal) if ¢ is odd (resp. even), the
formula (9) follows immediately. [

Lemma 3.4. Lett = (t1 : ty : t3) € C(k). Thent € C(F,2) if and only if t1, s, ts are linearly
dependent over IF .

Proof. See [15, Lemma 2.1]. Alternatively, we give the following independent proof:
The forward implication is immediate, so we will only show the reverse implication. Assume

t1, 2, 3 are linearly dependent over F». Then there exist a, b € k such that t; = at? ’ + bt? * for
1 = 1,2, 3. Substituting this into the defining equation of C', we obtain

3 3 3 3
2 3 2 5 3 4 4 5
AN T Ly W @by T Ty P =0,
1=1 1=1 i=1 1=1

Again using the defining equation of C', we see that the first, third, and fourth terms vanish, so
2 5 3
that also ab? S0 177" = qb? (33 TP = 0. If @ = 0 then the point t = ({1 : t5 : L3) is

i=1"1 i=1"1

defined over [F,» and hence, by Lemma 3.3, it is defined over [F .. If b = 0, then ¢ is defined over
9



F,» as well. So we may assume that 37, th+1 = 0. Let Z := V(ngurl + X§3+1 + X§3+1)
be the Fermat curve of degree p® + 1. Then ¢t € C'N Z. The intersection number of C and 7 is
(p+1)(p*+1) and each point of C(F,2) is in C' N Z. Since |C'(F,2)| = p*+1 by Lemma 3.3, it
is enough to show that for each point s € C'(F,2), the local multiplicity of C' and Z at s is p+ 1.
Since the unitary group U;(F),) acts transitively on C'(F,2), we may assume that s = (¢ : 0: 1)
where (P! = —1. With local coordinates v = X; — ¢ and w = X, the respective equations
for C and Z at y become vP*! + (vP + (v + wPt! and vP T + CoP”’ + (Pu + wP L. Now we
may read off that the local multiplicity, i.e., the valuation of v at s, is p + 1, as required. U

We will denote C° := C'\ C(F,2). Slightly abusively, we will tacitly switch between the
notations (¢y, ta,t3) and (¢; : t5 : t3). For later use, we define the following:

Definition 3.5. For t = (t1,1,,13) € k3 (viewed as a column vector), let
End(t) = {A € Mats(F,2) : A-t € k- t}.
Lemma 3.6. For anyt € C°(k), the F 2-algebra End(t) is isomorphic to either F > or F .

Proof. For any A € End(t), we have A - t = a4t for some ay € k. The map
End(t) — k
A oy
is an F2-algebra homomorphism. It is injective, i.e., A - ¢t = 0 with ¢ = (1 : 5 : t3) implies
that A = 0, since the ¢; are linearly independent over F,2 by Lemma 3.4. Hence, End(?) is a
finite field extension of F,2. Since End(t) C M3(F,2) = End((F,2)?), we may regard (F,2)?
as a vector space over End(t). It follows that [End(t) : 2] | 3, as required. O

Lemma 3.7. We have
(10 CM :={t € C°(k) : End(t) = Fpe} = C°(Fps).

Proof. The containment {t € C°(k) : End(t) ~ F,6} C C°(F,s) is immediate, because ¢ is an
eigenvector of a matrix in Mats([F,2) and can be solved over the ground field IF,,c. We will now
prove the reverse containment.
For each ¢ € C°(F,s), we construct for each element o € F,6 a matrix A € Matz(Fs) as
follows
A=A, = (4,17 t¥)) . diag(a, o, a?") - (¢, @) @)1,

Since the t; are linearly independent over > by Lemma 3.4, the matrix (¢, t®*), +®")) is invert-
ible. We check that

AP = (1) 10N 1) - diag(a?”, o, a) - (@) 1P ¢)71

2 4 O O 1 2 4 0 1 0 2 4
= (t,t®),t®)). [1 0 0] -diag(e?,a”,a)- [0 0 1] (¢, t®) t@))~!
010 1 00
— A
and hence A € Mats(FF,2). We also have that A, - ¢ = . Thus, the map a € Fj 6 — A, gives
an isomorphism s o~ End(¢), as required. O
Remark 3.8.

(1) We can also show that Us(F,) acts transitively on C°(F,s) = CM. The action on
C(F,2) is also transitive, with stabilisers of size p*(p + 1)(p* — 1); this gives another

proof of the result |C(F,2)| = p® + 1.
10



(2) The proof of Lemma 3.6 proves the following more general result. Let F' be any field
contained in a field K and ¢y, 1o, ..., 1, be a set of F'-linearly independent elements in
K.Putt= (t,...,t,)" and End(t) := {A € Mat,(F): A-t C K- t}. Then End(t)
is a finite field extension of F' of degree dividing n.

(3) The proof of Lemma 3.7 proves the following result in linear algebra: Lett,, ..., ¢, be
a set of IF-linearly independent elements in k. Suppose that t = (t;) € F7... Then t is
an eigenvector of a matrix in Mat,, (F,).

Definition 3.9. For an abelian variety X over £, its a-number is defined as
a(X) := dimy Hom(ay,, X).

So for an abelian threefold X over k, we have a(X) € {1,2,3}. For a Dieudonné module M
over k, the a-number of M is defined as a(M) := dim(M/(F,V)M). If M is the Dieudonné
module of X, then a(M) = a(X). When z € &, ~ P(0(—1) @ O(1)) corresponds to
a polarised flag type quotient ((Y5, A2) — (Y1, A1) — (Yo, \o)), we say that its a-number is
a(x) = a(Yy).

Definition 3.10. The morphism 7 : &2, — C admits a section s defined as follows. For a base
scheme S, let py : (Yo, p) — (Y71, A1) be an object in C'(.S). Put (YQ(p), ) = (Y, ) X 5,55 S,
where Fg : S — S is the absolute Frobenius map. The relative Frobenius morphism F : Y5 —
YQ(p ) gives rise to a morphism of polarised abelian schemes F : (Y3, pu) — (Yg(p ), 1)), Since

ker(ps) C ker(F), the morphism factors through an isogeny p; : Y; — YQ(p ). As pspipP) =
F*u® = pu = p3sA1, we see that piu® = )| and thus obtain a polarised flag type quotient

(Yo, ppr) —2 (Y1, M) —2 (VP @),

This defines the section s, whose image will be denoted by 7T'.

Proposition 3.11. Let the notation be as above.
(1) We have #,, = &, —T.
(2) If x € T then we have a(x) = 3.
(3) Foranyt € C(k), we have t € C(F,) if and only if a(z) > 2 for any x € 7 (¢).
(4) Forany x € Po(O(—1) ® O(1)), we have a(x) = 1 ifand only if x ¢ T and w(z) ¢
C(F,2).

Proof. See [12, Section 9.4]. [

3.2. Minimal isogenies.

Given a polarised flag type quotient Y5 = oD Y: & Y, = X, the composite map
p1ope: (Yo, Aa) — (Yo, A0) = (X, A) is an isogeny from a superspecial abelian variety Y.
Thus, this isogeny factors through the minimal isogeny of (X, \):

<Y27)\2) % (‘357}\/) £> <X7 )\)

Since every member (X, \) € .5, (k) can be constructed from a polarised flag type quotient
(Y4, pe), we can construct the minimal isogeny of (X, \) from (Y, p.).

To describe the minimal isogenies for supersingular abelian threefolds in more detail, in the
following proposition we separate into three cases, based on the a-number of the threefold.

Proposition 3.12. Let (X, \) be a supersingular principally polarised abelian threefold over k.
Suppose that (X, \) lies in the image of &), under the map &, — /3, for some |1 € P(E?),
so that there is a unique PFTQ over (X, \).

(1) If a(X) = 1, then the associated polarised flag type quotient (Y, Ao) £ (Y1, M) £

(Yo, Xo) = (X, \) gives the minimal isogeny ¢ := py o py of degree p>.
11



(2) If a(X) = 2, then in the associated polarised flag type quotient Yo = E = Y, —

Yo = X we have a(Yy) = 3, so Y] is superspecial. Thus, the minimal isogeny is
p1: (Y1, A1) = (X, X\) of degree p, where p; A = )\ satisfies ker(\1) >~ o, X au,.

(3) If a(X) = 3, then X is superspecial. Thus, X is k-isomorphic to E® and the minimal

Proof.

isogeny is the identity map.

(1) Let M5, M;, M, denote the Dieudonné modules of Y5, Y7, Yy = X, respectively.
Then a(Ms) = 3. Suppose that a(My) = 1. By Proposition 3.11, this corresponds to
apointt = (t; : to : t3) ¢ C(F,2). We claim that a(M;) = 2, which implies the
statement. The Dieudonné modules satisfy the following inclusions:

M, 2 M, ) My
Q Ul Ul Q
(Fvv)M2 o (Fvv)Ml = (F7V)MO
Q Ul Q Ul Q
(F7V)2M2 = (F7V)2M1 = (F7V)2MO-

All inclusions follow from the construction of flag type quotients. For the equalities,
we note the following: Since M, is superspecial of genus three, we have (F, V)M, =
FMQ, (F, V)2M2 = pMQ, and

It follows from the definition of flag type quotients that dim(A/; /FMs) = 1, s0 M, /FM,
is generated by one element, namely the image of ¢ (abusively again denoted ¢). So
(F, V)M /pM; is two-dimensional and generated by the two elements F¢ and V¢, which
are k-linearly independent since ¢t ¢ C'(F,2), by Lemma 3.4. Using this, we see that

dim(FMa/ (F,V)My) = dim(FM,/pM,) — dim((F, V)M, /pMs) = 1

and a(M;) = dim(M;/(F,V)M;) = 2, as claimed. It follows from dim(M; /M) = 1
and a(M;) = 2 that dim(M,/(F,V)M;) = 1. As we have assumed that a(M,) =
dim(M,/(F,V)M,) = 1, the latter implies the equality (F,V)M; = (F,V)M,. Since
dim(My/(F,V)M;) = 1 and dim(My/pMs) = 2, one has dim(F, V)M, /pM,y) = 2.
Since t1, t2, t3 are F2-linearly independent by Lemma 3.4, the vectors F?¢, pt and V*¢
in FM, /pF M3 span a 3-dimensional subspace and hence dim((F, V)?M; /pFM,) = 3.
This shows the equality pM, = (F,V)?M, = (F,V)?M,.

Now put @ := 1+ FV~!. We have shown that V® M, = (F, V)M, is not superspecial
and that ®?>M, = pM, is superspecial. Therefore, M, is the smallest superspecial
Dieudonné module containing M. This proves that p; o py : Yo — X is the minimal
isogeny.

(2) When a(M,) = 2, this corresponds to a point t = (t1 : to : t3) € C(F,2). Using the

notation from the previous item, we still have that (F, V)M, /pM, is generated by Ft
and V¢, but since the ¢; are F,2-linearly dependent, we have dim((F, V)M, /pMs;) = 1,

s0 a(My) = 3. Since ker(X\) C Yi[F] ~ o3, we have ker(\) ~ o2, as claimed.

(3) The fact that a(X) = 3 if and only if X is superspecial is due to Oort, [14, Theorem 2].

l

Remark 3.13. The proof of [12, Lemma 1.8] uses the claim: If X is a g-dimensional super-
singular abelian variety with a(X) < ¢, and X' := X/A(X), where A(X) is the maximal
a-subgroup of X, then a(X’) > a(X).

Now take Y; the abelian threefold as in Proposition 3.12(1). We have computed a(Y;) = 2
and a(Y;/A(Y1)) = a((F,V)M;) = 2. This gives a counterexample to the claim.

12



4. THE CASE a(X) > 2

Letz = (X,\) € S1(k) witha(X) = 2andlety € &, ~ PL(O(—1) & O(1)) be the
point corresponding to the PFTQ over it:

(}/27>\2) p_Q) (Yia)\l) p_1> (}/07>\0) - (X7 >\)

By Propositions 3.11 and 3.12, (Y7, A1) corresponds to a point ¢ = (t1,t9,t3) € C(F,2) and u €
PL(k) := 7~ 1(t). Moreover, p; : (Y1, A1) — (X, ) is the minimal isogeny. Put z; = (Y7, \).
Then A,, = A3, and by Corollary 2.5 and Proposition 2.12 we have

(p=D@°+ D’ 1)
210.34.5.7
where (M, (,)) € (M, (,)) are the quasi-polarised Dieudonné modules associated to (Y7, A;) —

(X, ).

Let M, denote the dual lattice of M; with respect to (,). Then one has M C M C M,
and M/M, € P(M,/M,") = P}(k) is a one-dimensional k-subspace in M; /M,’". Since the
morphism p, is defined over Iz, the threefold Y is endowed with the [F2-structure Y] with
Frobenius 7y, = —p. The induced F:-structure on P} is defined by the F,2-vector space
Vo := My/My°, where MY := {m € M, : Fm + Vm = 0} is the skeleton of M, cf. [12,
Section 5.7].

Since ker(\;) >~ a;, X a,, the quasi-polarised superspecial Dieudonné module (M, (,)) de-
composes into a product of a two-dimensional indecomposable superspecial Dieudonné module

and a one-dimensional such module. By [12, Proposition 6.1], there is a I/ -basis ey, es, e3, f1,
fg, fg for M1 such that Fei = —Vei = fi, Ffz = —sz = —pe€;. for: = 1, 2, 3,

(e1,e2) =p ", (fi,fo) =1, (es, f3) =1,

and other pairings are zero. Then M, is spanned by peq, pa, €3, f1, fo, f3 and My /M) =
Span,{ei,ea}. Letu = (u; : up) € PI(k) be the projective coordinates of the point cor-
responding to M /M,’. That is, M /M’ is the one-dimensional subspace spanned by u =
1€ + us€s, Where €; denotes the image of e; in M; /M.

If u € P}(F,), then a(M) = 3 and Mass(A,) is already computed in Corollary 2.5.
Suppose then that u & P}(F,2). In this case, M (resp. M}') is the smallest (resp. maximal)
superspecial Dieudonné module containing (resp. contained in) M. Thus,

End(M) = {g € End(M)) : g(M;') € My, g(M) C M}.

(11 Mass(A,) = S[Aut(My, () - Aut(M, (,))],

Consider the reduction map
m : End(M,;) = End(M?) — End(M? /M) = Endy , (Vo) = Maty (Fz2).
It is clear that End (M) contains ker(m) and that m induces a surjective map
m : End(M) — m(End(M)) = {g € Maty(F,2) : g-u C k- u}.
Write End(u) := {g € Maty(F,2) : g-u C k- u}.

Lemma 4.1.

(D) Ifu € PH(Fy) — Py(F,2), then End(u) C Maty(F,2) is an F2-subalgebra which is
isomorphic to Fpa.
(2) Ifu € P{(k) — P}(F 1), then End(u) = F e

p2.

Proof. This is a simpler version of Lemmas 3.6 and 3.7 so we omit the proof; cf. also [25,

Section 3]. O
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Put (,); := p(,). Then (,); induces a non-degenerate alternating pairing, again denoted
(,)1: Vo x Vy = Fp2. The reduction map m then gives rise to the following map

(12) m : Aut(My, (,)) = Aut(My, (,)1) = Aut(Vp, (, )1) = SLa(Fp2).
Lemma 4.2. The map m : Aut(M, (,)) — Aut(Vp, (, )1) is surjective.

Proof. Since Y; is supersingular, we have that End(Y};) ® Z, ~ End(M;) and that G, (Z,,) ~
Aut(M, (,)); recall the notation from (6). The group scheme G, ® Z, is a parahoric group
scheme and in particular is smooth over Z,,. Thus, the map G, (Z,) — G, (F,) is surjective.
Now Aut(Vp, (,)1) = Resg , /r, SL2 viewed as an algebraic group over I, is a reductive quo-

tient of the special fibre G, ® F,. Therefore, the map G, (F,) — Aut(Vj, (,)1) = SLo(F,2)
is also surjective. This proves the lemma. U

We now prove the main result of this section.

Theorem 4.3. Let v = (X, \) € S3,1(k) with a(X) > 2 and let y € &7 (k) be a lift of x for
some p € P(E3). Write y = (t,u) where t = nn(y) € C(F,2) and u € 7 '(t) = P} (k). Then
L

(13) Mass(A,) = m,
where
(p—1DP*+1)(p*—1) ifu € PH(F,2);
(14  L,=q@-D@*+1)E -1 -p) ifu € PH(Fp) \ P} (Fp2);

270 (p =P+ D - DP*(p* — 1) ifu g PH(Fp);
where e(p) = 0ifp=2and e(p) = 1ifp > 2.
Proof. By Lemma 4.2,
[Aut(M, (,)) : Aut(M, (,))] = [SLa(Fp2) : SLa(F,2) N End(u)*].
By Lemma 4.1,

SLy(F,2) N End(u)™

Flo  ifue PH(Fy) \ PL(F,e);
{£1} ifu & PL(F,.).

It follows that

, PP -1 ifu e Pi(Fu) \ Py (Fpe);
[Aut(My, () - Aut(M, (,))] = {| PSLy(F,)| if u & PH(F,4),

so the theorem follows from (11). ]

5. THE CASE a(X) =1

Suppose that (X, \) is a supersingular principally polarised abelian threefold over k& with
a(X) = 1. By Proposition 3.12(1), there is a minimal isogeny ¢ : (Y2, u) — (X, A), where
Y, = Eg, and where p*\ = pu for 4 € P(E?) a principal polarisation. In this section we will
compute the local index

(15) [Aut((Y2, 1)[p™]) = Aut((X, A)[p™])]-

Let M and M, be the Dieudonné modules of X and Y5, respectively. Together with the induced
(quasi-)polarisations, we have (M, (,)) and (Ma, (,)2), where (,)s = p(,) is again a princi-
pal polarisation. (Note that (My, (,)2) is the quasi-polarised Dieudonné module associated to

(Y2, i), and not to (Y, pit).) The proof of Proposition 3.12(1) shows that every automorphism
14



of M can be lifted to an automorphism of M, i.e., that Aut((M, (,))) C Aut((Ms, (,)2)).
Then equivalently to (15), cf. Proposition 2.12, we will compute

(16) [Aut((M2> <7 >2)) : AUt((Mv <7 >))]

5.1. Determining Aut((Ms, (,)2)).
Let W = W (k) denote the ring of Witt vectors over k. Choose a W-basis ey, e, €3, f1, f2, f3
for M5 such that

(17) Fei=—Ve; = fi, Ffi=-Vfi=—pe;, (e fj)2=70ij, (ei,ej)2=(fi,[fj)2=0,
foralli,j € {1,2,3}.

Let D, be the division quaternion algebra over Q, and let &p, denote its maximal order. We
also write D, = Q,2[lI] and Op, = Z,[I1], where Z,» = W(F,2) and Q2 = FracW (F,:),
and where [1? = —p and Ila = all for any a € Q,2. Here a — @ denotes the non-trivial
automorphism of Q,2/Q,. If we let * denote the canonical involution of D,, then a* = @ for
any a € Q,2, and II* = —II.

Lemma 5.1. We have End (M) ~ Mats(Op,) and hence Aut(M,) ~ GL3(Op,) (not taking
the polarisation into account).

Proof. We have End(M;) = End/;Dp(MQO), where MY := {m € M : Fm+Vm = 0} denotes
the skeleton of M>; this is an &p, -module where II acts by F and II* acts by V. Now the
result follows by using the basis e, e, e3 for Mats(&p,)°P (the opposite algebra); we choose

a convention where the matrices act on the left. We fix the isomorphism Mats(&p, )P ~
Mats(0p) by sending A to A*. O

We fix the identification End(M;) = Mats(&p) by the isomorphism chosen in Lemma 5.1
with respect to the basis in (17).

Lemma 5.2. We have Aut(Ms, (,)2) ~ {A € GL3(Op,) : A*A ~ I3}

Proof. It suffices to check that (A - e;,e;)2 = (e;, A* - e;), for any A € Matz(&)p,) and any
’i,j € {1, 2, 3} Write A = (CLZ']') and A* = (CL%) with ;5 = Cij + dZJH for Cij, di]’ € ZPQ, and
with a}; = a;. Then

(A-ei,ej)e = <Z airer, €j)2 = (dij fj, €5)2 = —dyj
k

coincides with
(e, A" - ej)2 = (e, Za;k€k>2 = (e, a;‘iei)Q = (e;, Gijei — dijfi)2 = —dij,
k
as required. U

5.2. Endomorphisms and automorphisms modulo p M.

The proof of Proposition 3.12(1) contains the important observation that pMy; C M. This
allows us to consider the endomorphisms and automorphisms of both M, and M modulo p
(i.e., reducing modulo pM>5) and modulo II. We first define these objects.

Definition 5.3. Let m,, denote the reduction-modulo-p map and my; the reduction-modulo-II
map. By Lemma 5.1, for M, we have

(18) End(Ms) ~ Mats(Op,) % Mats(Fpe[T1]) 7% Mats(F,z2).
On the level of automorphisms (respecting the polarisation) we get

(19) Aut(Ma, (,)2) 72 Gty — Gty
15
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where

(20) Gatn.(y) = {A+ BII € GLy(F2[1I)) : AA' =13, BTA = A" B},
(here, BT denotes the transpose of the matrix 1), and where

21) G ()e) = {A € GL3(F,2) : A*A =13}

Definition 5.4. For M we have End(M) = {¢g € End(M,) : g(M) C M} and Aut(M) =
{9 € Aut(M,) : g(M) = M}, and

(22) Aut(M, (,)) ={g € Aut(My, (,)2) : g(M) = M }.

Under the same maps m,, and my, we find

(23) En = mp(End(M)) = {A € Maty(F2[II]) : A- M/pM, C M/pMs}
and E s := mp(Ey) C Maty(F,2). These fit in the diagram

End(M) —— End(M,) = Mats(0p,)

(24) Ey ————— Mats(F,2[1]))
EM > Matg(Isz)

in which all horizontal maps are inclusion maps and the left vertical maps are the surjective
reduction maps.
On the level of automorphisms, we let

(25) G = mp(Aut(M)) = {A € GL3(F2[l]) : A- M/pMy C M/pM>}
and Gy = my (G ). For the polarised versions, since ¢*A = pu, we obtain

(26) Gory =19 € Gun)y  9(M/pMy) © M/pMy}

and

27) Gary =19 € Gomyy) + 9(M/pMz) © M/pMy}.

Denote the group of three-by-three symmetric matrices over [F2 by S3(IF,2); this group has
cardinality p'? (since it a six-dimensional F2-vector space). Also recall that the group Us(F,,)
of three-by-three unitary matrices with entries in 2 has cardinality p*(p + 1)(p? — 1) (p® + 1).

Lemma 5.5. In Equation (20) we have A € Us(F,) and BT A € S3(F,2). Hence,

(28) |G vta, )| = [Us(Fp)l - 1S5(Fpe)] = pP (0 + D(p* = D(* +1).
Remark 5.6. Now we note, cf. (16), that
(29) [Aut((Ma, (;)2)) + Aut((M, ()] = [G(an,2)  Gangp)-

In light of Lemma 5.5, it now suffices to compute [G'(as,(),) : G(ar,(,y)]- This will take up the
remainder of this section.

We start by studying the unpolarised automorphisms Gz, Thus, let g = (ai;+bi;11)1<; j<3 €
GL3(FF,2(II)) be an (unpolarised) automorphism of M, /pM,. If we take €1, €2, €3, f1, fa, f3
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(i.e., the reductions of ey, ..., f3 in the previous subsection) as a basis of Ms/pM, in this
order, g can be expressed by a matrix of the form

A 0
(30) 9= (B A(p)) ’

where A = (a;;)1<,j<3,.8 = (bij)1<ij<s. and AP = (al})1<i s

Recall from Proposition 3.12(1) that the polarised flag type quotient Y, — Y; — X corre-
sponds to apointt = (t; : t : t3) € C°(k) such that M, /F M, is generated by ¢, €, +12€5+13¢3,
where M is the Dieudonné module of Y;. We choose a new basis for M, /pM, as follows:

El = Z tiéia EQ = Z tféz, Eg = Z tlifléi,

=123 =123 =123
_ _ _ _ _ 1 —
o o p ._ p
Fy = E tifi, Fo = E t fi, 3= E t;  fi
=123 i=1.2,3 =123

(This is a basis by Lemma 3.4.) Using this basis, ¢ is expressed as

T-'AT 0
1) 7= (T—lBT ’Jr—lA(m']r)’
where
to# tﬁ’:
(32) T:= |t t tg_l
ty th th

Now we determine the group Gy C GL3(F,2[II]) of elements preserving M /pM,. Any
such element will also preserve M;/pM,. We prove the following proposition.

Proposition 5.7. Let g € GL3(IF,2[I1]) be an automorphism of M, /pMs, expressed as in (30).
Then g € Gy (i.e., g preserves M /pMs) if and only if the following hold:
(a) We have A -t = ot for some o € k, i.e., A € End(t).
(b) The (1,1)-component of the matrix T-' BT is usui* (o — o?”).
Proof. For an A € End(t) (see Definition 3.5) with eigenvalue «, it holds by definition that
a

%
,TIAPT = [+ P

* aP

(33) T AT =

* X ¥
* X ¥

As det(A) = a'?° 7" and det(A®) = det(A)?, we see that

ap
(34) THAPT = [ * aP

* aP

By Proposition 3.12(1), the quotient M; /pM; is a two dimensional k-vector space generated by
Eyand Fy. As MY = (F,V)M, = pM,, we find that M /pM, C M, /pM, is a one-dimensional
k-vector space. Take u1, us € k so that M /pM, is generated by the image of u; By + us Fy. As
M # pMs;, we see that u; # 0.

We see that if g € GL3(F2[II]) preserves M /(F, V)M, then it induces an automorphism of
M, /(F,V)M; = M;/pM; which is expressed as (j o ) by (31), (33), and (34). Moreover, g
also preserves M/(F, V)M, = M/pMs if and only if the column vector (| _,3) (i} ) is in the

subspace spanned by (. ). This is equivalent to the entry * being equal to usuy (o —a®’). O
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Remark 5.8. (1) It follows from the construction of polarised flag type quotients that for
(X,\) with a(X) = 1 and a choice p € P(E?®) together with an indentification
(X, \) = (E3,pu), there exists a unique pair (¢,u) where t = (¢, : 1o : t3) € C°(k)
and u = (u; : uy) € P(k) as in the proof of Proposition 5.7. For the rest of the section,
we will work with these (¢, u).

(2) The coordinates (¢, u) in (1) also give rise to a trivialisation C° x P ~ o0, where
Peo = P, xc CY, as follows. By Proposition 3.2, points in o correspond to pairs
(M1, M): here M, C M, is a four-dimensional subspace generated by the subspace
VMQ and El = t1e1 + g€y + tgég with (tl R tg) € CO, and M Q MQ is a three-
dimensional subspace with Mll C M C M,, where Mll is the orthogonal complement
of M with respect to (, )5. The two-dimensional vector spaces M/ Hll fort € C°
form a rank two vector bundle ¥ = &(1) & O(—1)|co over C°. As shown in the proof
of Proposition 5.7, the images of E, and F; in M, /M, (again denoted by £, and
I, for simplicity) form a basis, and give rise to two global sections Ei and Fy of ¥
respectively (note that both E, and F, are vector-valued functions in t, t5, and t3).
Then the desired trivialisation C° x P — Po ~ P(¥) is given by (¢, (u1 : ug)) —
[ur By (£) + usF1 (t)]. Since M, is the Dieudonné module of £, the vector space M
has an [F »-structure, so we see that this trivialisation is defined over F .

Now lett € C°(k) and v = (0 : 1). The corresponding subspace M is generated by
F; and Hf = (F, V)Hl. Therefore, we have M = VM, which corresponds a point
in T It follows that under the above trivialisation, 7' ~ C° x {cc}.

The following lemma follows from Lemma 3.6, Lemma 3.7, and Proposition 5.7. It describes
the polarised elements g € G(ar,,(),) that preserve M, /pM,: for such g of the form (30),
Proposition 5.7(1) implies that A € End(t), while Definition 5.3(20) implies that A is unitary.

Lemma 5.9. Lett = (t; : 1y : t3) € CO(k).
(1) Whent ¢ C(FFs), we have
End(t) NU3(F,) ~ {a € Fjz : o™ =1},
(2) Whent € C(F6), we have
End(t) NUs(F,) ~ {a € Fps : ot =1}
Proof. (1) This follows since a diagonal matrix all; with o € )2 is unitary if and only if
aPtl =1,
(2) Take any A € End(t) N Us(F,). The eigenvalues of AP are a”, a”’ o”" where o
is the eigenvalue of A. As A is unitary, o' is also an eigenvalue, so we have o~ ! €
{a?, a?’ a?’}. In each case, we have a1 = 1.
For the converse, choose any o € F,s such that ot = 1. By the proof of
Lemma 3.6, the corresponding A € End(¢) is given by

A= (t,t%) 1PN diag(a, o, o) (¢, @) @)1,
We compute that

AAPT — (t, t(pQ)’ t(p4)) 5P’ (t(p)’ t(PS)’ t(ps))T
Sfp
where s = tﬁ’gﬂ + t’2’3+1 + t§3+1. That is, AA®7 is independent of a. By the case

a =1, we have AA®T =1,
18



t

Suppose now that we have g € G ar,,(,),) of the form (30) preserving M, /pMs, i.e., we have
A € End(t) N Us(F,) by Lemma 5.9. We now determine the conditions on B so that g also
preserves M /pMs, i.e., so that g € G )~ By (20), B satisfies a symmetric condition.

Let S5(F,2)A (for A € End(t) N Us(F,) as above) be the [F2-vector space consisting of
matrices of the form S A for some S € S3(FF,2). Define a homomorphism of [F,2-vector spaces

Y a :S3(F2)A — k
SA — the (1,1)-component of T~ 'SAT.
Similarly define a homomorphism
Yy :S5(Fp2) = k
S+ the (1,1)-component of T~ *ST.

Using these notations, we have the following proposition.

(35)

(36)

Proposition 5.10. The group G () consists of the matrices of the form

A 0
SA A®

satisfying the following conditions:

(1) A € End(t) N Us(F,) with eigenvalue o

(2) S € S3(F,2) is a symmetric matrix; and

(3) 1y.a(SA) = upui o — o?”).
The third condition is equivalent to

(3) i(S) = uguy (1 — a” 1),

Proof. 1t follows from (26) and Proposition 5.7 that for A € End(¢) N Us(F,) with eigenvalue
v, the matrix (g A((]p)) is an element of G (u7,(),) NG (a1,() if and only if BA™! is a symmetric
matrix and the (1, 1)-component of the matrix T~ BT is usu; (o — o”). The latter condition
amounts to Condition (3) (and (3’)) by noticing that since T~ AT is of the form

a * %
* %
* %

where « is the eigenvalue of A, we have a commutative diagram

S3(Fe) —2s k

(37) [ l ,

Sy(F,2)A —%5 &

where the left vertical arrow is multiplying A from the right and the right vertical arrow is
multiplying with . O

The following corollary follows immediately from Proposition 5.10 and summarises the re-
sults in this subsection.

Corollary 5.11. We have

(38)  |Gury| = {A € End(t) N Us(F,) : uguy (1 — o) € Im(¢)}] - [ kex(y)].
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5.3. Analysing Im();) and ker(?);).
In the following subsection, we will make Corollary 5.11 more explicit by analysing the
image and kernel of the homomorphism ;.

Definition 5.12. In the notation as above, we set

39) d(t) := dimg , (Im(t)).
As dimg , (53(Fy2)) = 6, we see that d(¢) < 6, and that

(40) [ ker(1)y)| = p*©= ).

We prove the following precise result about the values of d(t).

Proposition 5.13. We have 3 < d(t) < 6. When p = 2, we have d(t) = 3. Let v =
(2,13, 83, t1to, t1t3, tat3) and let

A = {det (UT’ (U(pQ))T’ (v(p“))T’ o (U(plo))T> _ O} '
When p # 2, we have:
d(t) =3 if and only if t e CO(FPG);
d(t) =4 ifand onlyif ~ t € C°(Fps);
d(t)=5 if and only if te ANCY\ (COF,s) LCO(Fps)) ;
) = if and only if tg ANCY.

(41)

Proof. Since t € C°(k), we see that t; # 0, and without loss of generality we assume that
ts = 1. For 1 <, j < 3, let I;; be the three-by-three matrix whose (i, j)-component is one and
where all other entries are zero. Then [, I5o, I33, I15 + 151, I13 + I31, Io3 + I35 is a basis for
Ss(F,2) over IF 2. We set

wy = Py(111), wy = Y (I), ws = Pi(Is3),

wy = Yy(L1z + In1), ws = Pi(L1z + I31), we = 1 (I23 + I32).

Lemma 5.14. The w; in (42) satisfy the following relations:

(42)

wy = tjws, wy = t3ws,
wy = 2t1taws,
ws = 2t ws, we = 2tows,
and ws is not zero.
Proof of lemma. The inverse matrix of T is
-1 -1 -1 -1
B B t;’: 1 —ﬁ’ t{’f@; — f’%’
T =det(T)" | 57 —ty t,— 17 7 ty— 1y}
Lty -2 P, —

Since for any matrices M = (m;;), N = (n;;) and L = (I;;) the (1, 1)-component of M NL is
given by Zi,j mlmijljl, we have

wy = det(T) 15 — 8 )ty

wy = det(T) (£ — )t
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Furthermore, w3 is given by
ws = det(T) "L (288 — 7 #8)
= det(T) ' — o )
1 -1
= det(T) ', (5 — 15 ).

For the last equality, we used equations /! + 4™ 41 = 0 and tﬁ’flﬂ + t’2’71+1 +1=0.

-1

Similarly, we see that ws = det(T) 't;* (] — t}). These computations imply the first two
relations of the assertion, and since ¢;,%, & F,2, we see that w3 is not zero. Furthermore, we
compute that

wy = det(T) (B — 5 Vo + (B = H)ty)
= det(T) " L(EF! — 5 "+ g T gty
= 2det(T) "ty(th — 15 );

ws = det(T) (5 — 1) + (5 — 8 B)t)
= det(T) (5 — #2’_1 + t’f“tg_l . t11)_1+1t;2;)
= 2det(T) "1 (5 — 5 ).

Similarly, we see that wg = 2 det(T) (¢} T t), so we obtain the remaining relations. [

When p # 2, we see from Lemma 5.14 that
d(t) - dim]Fpg <w17 W2, W3, Wy, Ws, w6> = dimFPQ <17 t17 t27 t1t27 t%7 t§>
In particular, this implies that
d(t) Z dime2 <w3, Ws, w6> = dime2 <1, tl, t2> =3.

When p = 2, by Lemma 3.4 and Lemma 5.14, we see that d(¢) = 3. So assume p # 2, and
consider (41).

By construction (since t3 = 1), we have t € A if and only if dimlpp2 (1,11, Lo, tyto, 13, 13) < 5.
Hence we see that t € A N CY if and only if d(t) < 5, which gives the required statement
for d(t) = 6. Also note that if d(¢) < 5 then there exists some conic )/F,2 with equation
ay + asty + asty + agtyts + ast? + agts = 0 such that £ € C° N Q. Similarly if d(¢) < 4 then
there exist two independent conics Q1, Q2 such that t € C° N Q; N Q». In this case, Q1 and Q
do not have a common component (even defined over Fp). Otherwise, the intersection ()1 N Q2
must be a line L defined over [F 2 (because we require (); # ()2) and ); = L U L for another
line L, defined over FF,.. This implies that¢ € L or ¢ € L, a contradiction by Lemma 3.4. If
d(t) < 3 there exist three independent conics Q1, Q2, Q3 such thatt € C°NQ; N Q2 N Q3.

Ift € C°(F,2) then d(t) < a, i.e., if 2 < degg , (t) < a then d(t) < a, for any value of
a. This shows in particular that if ¢ € C°(F,s), then d(t) = 3, cf. Lemma 3.4. Conversely,
since |1 N Q2] < 4 by Bézout’s theorem we see that if d(¢) < 4 then degFPQ (t) < 4. That is,
then ¢t € C°(F,s) U C°(F,6); note that by Lemma 3.3 we have C°(F,4) = 0. If d(¢) = 3, then
the F2-subspace (1,1, to, 12,13, t1to) is equal to the IF2-subspace U spanned by 1, ¢, 5. Since
t4U C U and t,U C U, the algebra F2[t1, to] = U has dimension three and deg]FPQ(t) = 3.
This implies that d(¢) = 3 if and only if ¢ € C°(F,s) and hence d(t) = 4 if and only if

t € CY(F,s). The statement for d(t) = 5 now follows. O
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Remark 5.15. We provide another proof of the implication d(t) = 3 = deng2 (t) = 3,
since this information may also be useful. Suppose P, P», Ps, P, € IP’2(K ), where K is a field,
are four distinct points not on the same line. Then the conics passing through them form a
P!-family. To see this, suppose @ is represented by F(t) = 0, where F(t) = a1t} + aqt3 +
a3t§ + agtits + astits + agtits. By assumption Py, P, P3 are not on the same line. Choose a
coordinate for P? over K suchthat P, = (1:0:0),P,=(0:1:0)and P; = (0:0: 1). Then
a; = ay = ag = 0. The point P, = (o7 : ag : ag) satisfies (jag, ajas, asaz) # (0,0,0).
Thus, F'(P;) = 0 gives a non-trivial linear relation among a4, as, and ag.

Suppose now t € C° N Q; N Q2 N Q3 with F2-linear independent conics Q1, Qa, Q3. It
suffices to prove [Q1 N Q2 N Q3] < 3. If |Q1 N Q2] < 3, then we are done. So suppose that
Q1N Qy = {Py, Py, P;, Py}. If Q5 contains these four points, then ()3 is a linear combination
of )1 and (), over some extension of IF,,> and by descent an [F.-linear combination of ); and
()2, contradiction. Thus, we have shown that [); N Q2 N Q3] < 3.

Definition 5.16. Let Pco ~ C° x P! be the fibre Po(0(—1) @ O(1)) x¢ C° over C?, cf.
Remark 5.8. For each S € S5(F,2), we define a morphism fs : C° — Pco via the map
CO>t=(t; 1 ty:t3) = (P, (1:,(S)?)) € C° x PL. Observe from the computation in
the proof of Proposition 5.13 that v;(.S) is a polynomial function in ¢} o té’_l , tg_l , and hence
that ¢;(S)? is a polynomial function in ¢, ¢, t3. The image of fs defines a Cartier divisor
Dg C Zc0, and we let D be the horizontal divisor

D= Z Dg.

SES3(IFp2)

Fort € C°(k),let D; = 7—'(t) N D. That s, (u; : us) € Dy if and only if upu;* € Im(v)).

Lemma 5.17. Lett = (t; : t5 : t3) € CO(k).
(1) Ift & C°(Fys), then

FX i : Dy;
{a € T uguy (1 - o1y € Im(hy)} = { p o Fluiw) €Dy

FX*  otherwise.
(2) Ift € C°(Fys), then

FX i : € Dy;
{Oé e F;ﬁ . uzufl(l _ &p?»,l) c Im(wt>} _ FI;G lf}(lul u2) t
s otherwise.

Proof. (1) First we note that F) C {a € F; : upuy (1 —a?’~1) € Im(¢y)}. Since Im (1))
is an F 2-vector space, we have that if (uy : u) € Dy, i.e., if usu;' € Im(vy,), then
uguy (1—a?’~1) € Im(vy) for any a € F*,. Conversely if uyu; ' (1 - a”’~1) € Im (1)
for some o € F2 \ F, then upu; ! € Tm ().

(2) If t € C°(Fys), then Im(y)) C Fps. Since dimp , (F,s) = 3 and d(t) > 3 by Proposition
5.13, we must have that Im(z);) = F,s. The proof now follows from a similar argument
asin (1).

U
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Corollary 5.18. We have
{A € End(t) N Us(F,) : upu; (1 — oY) € Im(1hy)} ~

{a €F,: Pt =1} ift ¢ C°(Fys) and u ¢ Dy;

{a €Fp:artt =1} ift ¢ C°Fs) and u € Dy;

{a €Fp: a” 1 =1} ift € C%Fy6) and u ¢ Dy;

{a €Fp: a” 1 =1} ift € C%Fy6) and u € D,
Proof. This follows from combining Lemma 5.9 with Lemma 5.17. U
5.4. Determining [Aut((Maz, (,)2)) : Aut((M, (,)))]-

By Corollary 5.11, Equation (40), and the results in the previous subsection, in particular
Corollary 5.18, we immediately obtain the following result.

Lemma 5.19. Define e(p) = 0ifp =2 and e(p) = 1 if p > 2. Then
2¢(p) 2(6-d(1)) ifu ¢ Dy;
(43) Gyl = < (p+ 1D)p?E2®)  ift ¢ COF,6) and u € Dy;
(p® +1)p° ift € C°(F,6) and u € D.
Recall that d(t) = 3 when ¢t € C°(F ). Combining Lemma 5.19 with Lemma 5.5, and using
Remark 5.6, we conclude the following.
Corollary 5.20. We have
[Aut(Ma, (,)2)) : Aut((M, ()] = [Camge) : Gaarin] =
27 WP (p + 1)(p* — D* + 1) ifu ¢ Dy
P32 (p2 — 1) (p® 4+ 1) ift ¢ C°(F,6) and u € Dy;
Pp+1)(p*-1) ift € C°(F,6) and u € D;.
Now Corollary 2.5(1) and Corollary 5.20 yield the main result of this section, i.e., the mass

formula for a supersingular principally polarised abelian threefold x = (X, \) of a-number 1,
cf. Theorem B.

Theorem 5.21. Let v = (X,\) € 31 such that a(X) = 1. For p € P*(E?®), consider the
associated polarised flag type quotient (Yo, 1) — (Y1, A1) — (X, \) which is characterised by
the pair (t,u) witht = (t : ty : t3) € C°(k) and u = (u; : ug) € PY(k). Let (My, (,)s) and
(M, (,)) be the respective polarised Dieudonné modules of Ys and X, let D, be as in Definition
5.16, and let d(t) be as in Definition 5.12. Then

Mass(A;) = Mass(As1) - [Aut((Ma, (,)2)) : Aut((M, (,)))] =
45) P* 27 W0 (p? = (' = 1" = 1) ifu ¢ Dy

910 .34.5.7 P p—-1)p* - —1) ift ¢ C°(F,6) and u € Dy;
P°(p* =1 - ' - 1) ift € CO(F,0) and u € D.

(44)

6. THE INTERSECTION C'N A

Let C' C P? be the Fermat curve defined by the equation X' + X?*' 4 XP*! — (0 and
A C P? the curve defined in Proposition 5.13.
In the previous section we have seen the inclusion

C(Fpe) [TCOF) [T C°(Fpe) [T CO(Fp0) CC N A
for p > 2. In this section we study the complement of this inclusion. This is an independent

section; the results will not be used elsewhere in this paper.
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6.1. Bounds for the degrees.
Let 2 denote the set of all conics (including degenerate ones) ) C P? defined over F ..
Then A = UgeoQ. If t € CN A, thent € C'N(Q for some Q € 2 and hence degy, , () :=

[Fp2(t) : Fp2] < 2(p+ 1). We need the following well-known result.

Theorem 6.1 (Kummer’s Theorem). Let K be any field and n > 1 an integer and a € K*.
If (n,char K) = 1, and p,,(K*?) C K, and the element a (mod (K*)") in K*/(K*)" has
order n, then [K (a'/™) : K] = n.

The authors are grateful to Ming-Lun Hsieh for providing the following proposition.

Proposition 6.2. There exist a conic Q € 2 and a pointt € C N Q such that degy ,(t) =
P

(p+1).
Proof. Choose a generator u; of F;z such that u} +u; = —a # 0. Put u := a"'uy and let o be
ap + 1-throot of u. As a € F\, we have u” + u = —1. Since the element u (mod (F;2)p+1)

in IF;/(IF;Q)I’“ = F,/(F,) has order p + 1, one has [Fj2(a) : F2] = p + 1 by Kummer’s
Theorem. Let

Q: X1 Xo=uX] and t:=(a:ua"':1).
Oneseest € C as o™ + (ua™ )PP+ 1 =u+uw™ - w1 +1=0 Sot € CNQ and
deg]FPQ(t) =p+1. O

The following result, due to Akio Tamagawa, says that the upper bound 2(p+-1) for degy, , ()
in C'N A can be realised.

Proposition 6.3. There exist a conic Q € 2 and a point t € C N Q such that degy ,(t) =
P
2(p+1).

Construction. We first consider the case p = 2. Let  be a primitive fifth roof of unity in
Fy. Since (Z/5Z)* ~ (2 mod 5), we have Fy(¢) = Fas. One computes that (1 + ()® =
1+¢+¢+ ¢ #1and (1+¢)° = 1+¢2+ (3 # 1. Therefore 1+ ( generates the cyclic group
FJ, ~ Ci5. Choose 7, y, z € Fosuchthatz = 1,y® = (and 2® = 1+, and put ¢ := (z : y : 2);
we have 1 + ¢ + (1 + ) = 0. Since [F5(z) contains F5(() = Fai, we have Fy(2) = Fou(2).
Since (1 + ¢) = F.,, by Kummer’s Theorem, Fy(2) = Fa1(2) = Fa12 and hence degy, (1) =
6 = 2(p+ 1). Since z,y € Fau, there exist a, b, c € Fy2 such that az? + bxry + cy®> = 0. Let
Q) C P2 be the (degenerate) conic defined by the equation a X? + X, X, +cX3. Then the point
t € C'NQ satisfies the desired property.

Assume now that p > 2. We would like to find solutions ¢t = (z : y : z) with x € F;up iy
y € F i \F, and z € F, satisfying the desired properties.

Let

[ = /()2 et

be the natural projection; one has T, /(F5)*P*1) o Cy(,11) as p # 2. Consider the following
three sets:

7 = {zp+1 = IF;g ~ IF;;
(46) Y= {yt iy e B\ 2,
X ={§ €Fi: f(§) generates the cyclic group Cy(1) }-
The sets Y and Z are equipped with an IE‘; -action and we have
2(p+1
A7) Z|=p—1, |Y|=p(p-1), |X\:(p4_1).w_

2(p+1)
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Let g be the composition
N

g:F, F e 15‘;2/(15‘;)2 =~ Co(pt1)s

where N (a) = o’ *1 is the norm map. The map f can be identified with g by a suitable choice

of the generators. Since the image g(IF,’) is trivial, the image f(F)) is also trivial. Thus, X is

also equipped with an [F7-action and hence — X = X.
We would like to find

(48) n+¢=¢

forsomenecY,( € Zand€ € — X = X.
Note that X, Y and Z are mutually disjoint: that Y N Z = () follows by definition, and
XNZ = () follows from the fact that )\ C ker(f). Since f ((F;4)p+1) is the 2-torsion subgroup

of T, /()2 P+1) o Cypyay and f(Y) C f((F5)P*), the image f(Y') contains no generator
of Cy(p11). Therefore, we also have Y N X = 0.
We are working on the space P := IE‘;4 [~ P3(F,). The images of X,Y and Z in PP are

written as X, Y and Z, respectively. So Z = {(} and
p2(p+1))
5 :

For each point 7j € Y (7] # (), denote by L;; C P the line joining the points 7 and (. To solve
(48), it suffices to prove that

Z| =1, [Y|=p" [X|=0p"+1):

(49) UL | nX #0.

ney
This is because if £ € LN X for some 77 € Y, then we have an + b = c€ with a,b, ¢ € F>
and hence + (' =& withn € Y, (' € Zand ¢ € X.
Lemma 6.4. For any two distinct points 7, and s of Y, one has Ly, N Ly, = {C}.
Proof. Suppose that Ly, MLy, 2 {C}. Then Ly, = Ly, and 7y € Ly, . Therefore, —1y = an; +b¢
fora,b € F and hence we have

et +¢ =0
for some 1] € Y and (' € Z. Now write

ne = ()" = ()P = ()M,
with yo,y; € Fi \ F, and 2" € F/,. That is, we get a point (yo : 4} : 2') € C(Fy4). Since
C(F,s) = C(F,2) by Lemma 3.3, we have y», y; € F,2, contradiction. O
By Lemma 6.4,

ULy ={Qu]]L; - {
ney ney’
and hence
ULsl=1+41Y]-p=p"+1, and |P— ] L;| =p*+p.

ey ney

To show (48), we check the inequality

> p®+p

(50) |mzw+”ﬂ%;ﬂ
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for all p # 2. If p = 3, then | X | = 20 > 12 holds. For p > 5, by the inequality ¢(n) > /n/2,

it suffices to show
vp+1
2

(p? +1) - > p? 4 p.

This follows from
P+ 1) (p+1) —4@* +p)? =@+ 1)(p"' —4p” = 2p* +1) > 0

for p > 5. Therefore, the inequality (50) holds and we have found 7, (, £ as in (48).
Now write

¢ =2PT (forz € F5), n= Yyt (fory € FAA\FY).

Choose an element - € F,, such that 27*' = —¢ € . Since the element & (mod (F,)?*) is
a generator in F, / (IF;4)7’+1, by Kummer’s Theorem we have
51) [Fp4<l’) :Fp4] =p+1.

We claim that { ¢ F,. Suppose for contradiction that { € F;. Then

F(€) = g(&) € g(Fy2) = (F2)*/(F,)* S/ (Fy)* = Coprny.

Therefore, f(£) cannot be a generator of Cy(,41), contradiction. So since { € IF;4 \ IF;% we
have [Fj2(2) D 2 (&) = Fpa. This shows that

Fpo(2) = Fpu(e), and [Fye(e) : Fya] = 2(p + 1)
by (51). Putt := (x:y:2) = (z/2 :y/2: 1) € C(F,). Then we get
(52) [Fp2(t) : Fpe] =2(p+1).

Since y/z € IF‘;1 \IF;Q, there exist b, ¢ € F,2 such that

y\? Y _ 2 2 _
=) +b(=)+c=0, or y +byz+cz®=0.
z z

Let Q € 2 be the (degenerate) conic defined by the equation X3 + bX, X3 + X2 = 0. Then
t € CNQ and degy , (t) = 2(p + 1). This completes the construction. O
P

6.2. Estimate of |C' N A|.
In this subsection, points in C' will mean geometric points and C' N A will mean the set-
theoretic intersection. Define

Z ={t,Q)eCx2:te 2}

and consider the following natural maps:

z
AN
C 2
The degree of the map ¢ is 2(p + 1). For each @ € 2, the fibre over () has size
2(p+1) —eo
where eg = -, €q, with

cor=#{t € CNQ :multera(t) =r}- (r—1).
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Thus, |2 = 2(p + 1)(p*® + p® + p® + p* + p* + 1) — &, where

(53) ei=)Y ¢

Qe2
is the error term coming from intersection multiplicities.

Proposition 6.5. We have |C' N A| = p'' + o(p'!) — £ as p — oo, where ¢ is defined in (53).

Remark 6.6. We expect that ¢ = o(p'!). Then we would have |C' N A| = p'* + o(p'!) as
p — o0.

Proof. For any integer ¢ > 1, define
C;:={te C(F,): degIFp2 (t) = i}.
By Lemma 3.3, we have
C1l = [C(Fpe)l = p* + 1, |Cs] = |C°(Fpe)| = p° +p° —p* = p’,
|Cal = |COFs)| = p° = p° +p° = p°,  |C5| = |CO(Fpo)| = p™ +p" = p° — p".
For each point t = (t; : ¢y : t3) € C, the fibre 7'(t) is the set (W, — {0}) /T, where
W, = A{F € F2[ X1, X5, X3]o - F(t) =0}

and where F2[ X, X5, X3]» denotes the subspace of homogeneous polynomials of degree two.
They fit into the following exact sequence

0 W, Foo[X1, Xo, Xalo — Fpo(t2,42, 2, t1ty, tits, tats) — 0.

It follows that dim(W;) = 6 — d(t) and 7~ 1(t) ~ P>~4)(F2), where we redefine d(t) as the
dimension of 2 (t1, {3, 13, t1to, t1t3, tats) — even for p = 2. Therefore, the numbers of fibres
over C; fori =1,3,4,5 are

W+ +pt P+ 1), 0 Hp? 1), P, L
respectively. Then the number of points in 2 over the union of C; for i = 1, 3,4, 5 is given by
A=+ 1)@+ 9"+ +p" + 1)+ 0"+ 9" =" =)'+ 0"+ 1)
+ @ ="+ =P )P+ D)+ (0 + T =" 1)
— M 4 3pl0 2% 4+ pB 4 3pT — PSPt — 23 PP 41

Thus,
B :=#{(t,Q) € Z : deg]Fp2(t) >5}=|Z-A
— Mt 0 S T 3 e Pt AP P 21—k
Finally,
54) |ICNA| = |Im(7)| = |C1| + |Cs| + [C4| + |C5| + B

=p + 208+ 29"+ 3P +pt + 207+ 2p 2 e

7. THE AUTOMORPHISM GROUPS

In this section we discuss the automorphism groups of principally polarised abelian three-
folds (X, \) over an algebraically closed field £ O F, with a(X) = 1. We shall first focus
on an open dense locus in &2, (a = 1) (the a-number one locus in %2, in Subsection 7.2 and
then discuss a few other cases in Subsections 7.3 and 7.4. To get started, we record some

preliminaries in the next subsection.
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7.1. Arithmetic properties of definite quaternion algebras over Q.

Let (), denote the cyclic group of order n > 1. Let B, o, denote the definite quaternion
(Q-algebra ramified exactly at {oo, p}. The class number h(B, ) of B, -, was determined by
Deuring, Eichler and Igusa (cf. [9]) as follows:

o -t () (- ()

where (-/p) is the Legendre symbol. If (B, ) = 1, then the type number of B, ., is one and
hence all maximal orders are conjugate. It follows from (55) that

(56) h(Bps) =1 < pe{2,3,5,7,13}.

If p = 2, the quaternion algebra B; o, ~ _1@_1) is generated by i, j with relations i = j2 =
—1and k := 15 = —ji, and the Z-lattice

57 02,00 = Spany, {1, 1,7, 1—1—2—12-—3—1-/%}

is a maximal order of B; ... Moreover,

(58) O5 o = {il,ii,ij,j:k, ilii;:jik} =: Fyy,

and one has Fyy ~ SLo(IF3) and Eoy/{£1} ~ Ay.

If p = 3, the quaternion algebra Bs ,, ~ (_1@_3> is generated by i, j with relations i? =
—1,7%2 = =3 and k := ij = —ji, and the Z-lattice
147 1+i+j+k
(59) Oy 00 = SpanZ{l,i, ‘2”, “;” }

is a maximal order of B; ... Moreover,
(60) O3 = (i,¢) = Tha, G = (1+7)/2,
and one has Tj5 ~ Cy x Cy and T15/{+£1} ~ D3, the dihedral group of order six.
If p > 5, then O* € {C, Cy, Cg} for any maximal order O in B, - [17, V Proposition 3.1,

p. 145]. Fix O a maximal order in B, o, and let (O, C5,) the number of right O-ideal classes
[I] with Oy(I)* ~ Cy,, where O,(I) is the left order of . Then (see [9])

61) WO, Cy) = % (1 - (_?4)) and h(O,Cs) = % (1 - (_?3)) .

Lemma 7.1.

(1) Let Q) be a definite quaternion Q-algebra and O a Z-order stable under the canonical
involution x, and let n > 1 be a positive integer. Then the integral quaternion hermitian
group U(n,0) = {A € Mat,(0) : A- A* = 1.} is equal to the permutation unit group
diag(O*,...,0%) - S,.

(2) Let O be a maximal order in By . Let my : U(n,0) — GL,(0) = GL,,(0/20) be
the reduction-modulo-2 map. Then ker(msy) = diag({£1},...,{£1}) ~ C7.

Proof. (1) Let A = (a;;) € U(n,O). Then since AA* = I,,, we have ), a;.a, = 1 for
any 1 < i < n. Since ajka;fk = 0 or 1, forany 1 < i # n, there is only one integer
1 < k < n such that a;; # 0 and a;; € O*. On the other hand, since A*A = 1,
for any 1 < k£ < n, there is a only one integer 1 < ¢ < n such that a;; # 0 and
a;, € O*. Thus, A € diag(O*,...,0%) - S,. Checking the reverse containment
diag(O*,...,0%) - S, C U(n,O) is straightforward.
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(2) By (56), we may assume that O = O, . Since the diagonal entries of elements in
ker(ms) are all not zero, by part (1) we find ker(my) C diag(O*,...,O*). Therefore,
it suffices to show that the kernel of the reduction-modulo-2 map ms : O* — (O/20)*
is isomorphic to Cy. Using (58) and 20 = {ay + asi + a3j + ask : a; € Z, a1 = ay =
az = a4 (mod 2)}, one checks that indeed ker(my) = {+1} C O*.
O

Lemma 7.2. Let D, be the quaternion division Q,-algebra and O,, its maximal order. Let 1
be a uniformiser of O,, and put V,, := 1 + Il Mat,,(0,) C GL,(O,). If p > 5, then the torsion
subgroup (V,,)ors 0f V,, is trivial.

Proof. Let a € (V,,)iors; We must show that o = 1. Since V, is a pro-p group, we have o?" = 1
for some r > 1. By induction, we may assume that o” = 1. Put A := Z,[a] C Mat,,(O,) and
K = Q,la] € Mat,(D,). Then K ~ Q,, Q,(¢,) or Q, x Q,({,), where (, is a primitive pth
root of unity. Then K ~ Q, if and only if ord(«) = 1.

Suppose first that & ~ Q,(¢,). Write a — 1 = IIf for some (0 #)5 € Mat,(O,).
The reduced characteristic polynomial of « is det(t - Iy, — t(a)) = @,(t)>"®=Y, where
v : Mat,(O,) — Mats,(Q,) is an algebra embedding and ®, is the pth cyclotomic poly-
nomial. Putting # = 1, one obtains Nr(1 — a) = ®,(1)2"/®=Y = p?/=1 \where Nr is the
reduced norm from Mat(D,) to Q,. Taking the p-adic valuation v, of the above equation, we
obtain

2n
p—1
which is impossible because p > 5.

Suppose now that K = Q, x Q,((,) and write & = (1, ), where ay € Q,((,). Since
K C Mat, (D)) = Endp,(Dy), the faithful action of K on D} gives a decomposition D} =
Vi @ Vs, where V] ~ Dgl, Vo o~ D;”, and ny,ny > 1 with ny + ny = n. Now we regard « as
an element in Endp,, (V3) and write oy — 1 = 113, for an element (5 which is integral over Z,.
By the same argument as in part (1), we obtain

—n+u,(Ne(8)) > n,

2”2
p—1
which is again impossible. ]

= ng + Up(NI'(ﬁQ)) > N,

7.2. The region outside the divisor D.

Recall from Subsection 3.1 that £ is a supersingular elliptic curve over [F,» such that 7 =
—p. Let piean € P(E?) be the threefold self-product of the canonical principal polarisation on
E; this is also called the canonical polarisation on E3.

Theorem 7.3. Let v = (X,\) € 1(k) with a(X) = 1. For u € P(E?), consider the
associated polarised flag type quotient (Ya,pp) — (Y1, A1) — (X, \) which is characterised
by the pair (t,u) witht = (t : to : t3) € C°(k) and u = (uy : ug) € P(k). Let (My, (,)2) and
(M, (,)) be the respective polarised Dieudonné modules of (Ys, 1) and (X, \), let D, be as in
Definition 5.16 and let d(t) be as in Definition 5.12. Assume that (t,u) & D, that is, uw € D,.
(1) If p = 2, then Aut(X, \) ~ C3.
(2) Ifp > 5, orp =3 and d(t) = 6, then Aut(X, \) ~ Cs.

Proof. By Proposition 3.12, (Y3, pp) — (X, A) is the minimal isogeny. Therefore,
(62) Aut(X,\) = {h € Aut(Ys, 1) : mp(h) € Gar ) }-

By Proposition 5.10, we have an exact sequence

mi

(63) 1 — ker(z/Jt) — G(M7<’>) — E(M7<’>) — 1.
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(1) As p = 2, we have |A3;| = 1 by Hashimoto’s result [4]. Thus, we may assume that
(Yo, 1) = (E?, ptean), and we have Aut(Yz, 1) = diag(O*,0*,0*) - S3 by Lemma 7.1
with O = End(E). Asu ¢ D,, Corollary 5.18 yields Gur()) = {1} = 1. We
see from the proof of Proposition 5.13 that ker(¢);) is the [F,2-subspace generated by
Lo + Iy, 113 + I3, and Is3 + I35 (in the notation of that proof). Therefore,

(64) G(M7<7)) = {(HSB }?3) S = (Sij) € Sg(]Fp2),Sii =0Vl <i< 3} .

Let h € Aut(X,\) C diag(O*,0*,0%) - S3. Since my(h) has non-zero diagonal
entries, h € diag(O*,0*,0*). One deduces my(h) = 1 from (64). Thus, h €
ker(m,) = C3, by Lemma 7.1. On the other hand, ker(msy) € Aut(X, \) from (62).
This proves (1).

(2) Assume p > 5. As u & D, Corollary 5.18 implies that G(MM) = {£1}. Lemma 7.2
implies that the map my : Aut(X,\) — G, is injective, because ker(myy) is
contained in (V),)ors. Thus, Aut(X, A) >~ C;. Now assume p = 3 and d(¢) = 6. In this
case Gur,(,) = {£1} follows from (63) and Corollary 5.18. By a lemma of Serre [13,
p. 207], the map ms : Aut(X, \) = G(ar,( ) is injective and hence Aut(X, \) ~ Cs.

U
Corollary 7.4. Let the notation and assumptions be as in Theorem 7.3.
() If p=2, then |\,| = 4.
(2) Ifp =3 and d(t) = 6, then |A,| = 3" - 13.
(3) If p > 5, then
3+-2d(t) 2_1 4_1 6_1
p D p p
(65) Al = v D
210.3%.5.7
Proof. All statements follow from Theorems 5.21 and 7.3. For p = 2,
23.29.3.(3-5)-(3%-7)
66 A = =4.
( ) | | 210 . 34 . 5 . 7
For p = 3,
33+2d(®) . 23 . (24 . 5) . (2% . 7-13)
7 A — — 2d(t)—1 . 1 — 11 3 1
(67) sl S0 31 5 7 3 3=3".13,
and we obtain (65) for p > 5. U

A g-dimensional principally polarised supersingular abelian variety (X, \) over k is said to
be generic if the moduli point Spec k — .% ; factors through a generic point of ., ;. Recall
that the supersingular locus .%,; C @, ® [, is a scheme of finite type over I, which is
defined over IF,,. Moreover, every geometrically irreducible component of . ; is defined over
)2, cf. [24, Section 2.2].

Oort’s conjecture [1, Problem 4] asserts that for any integer g > 2 and any prime number p,
every generic g-dimensional principally polarised supersingular abelian variety (X, A) over k of
characteristic p has automorphism group {£1}. Oort’s conjecture fails with counterexamples
in (g,p) = (2,2) or (g,p) = (3,2); see [7,15].

For fixed g > 2 and prime number p, consider the refined Oort conjecture:

(O)gp: Every generic g-dimensional principally polarised supersingular abelian variety (X, \)

over k of characteristic p has automorphism group {41}.
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Corollary 7.5. Let (X, \) be a generic principally polarised supersingular abelian threefold
over k of characteristic p > 0. Then

3 =9
Aut(X,\) ~ 4 G2 Jorp=2
Cy  forp > 3.
Proof. This follows immediately from Theorem 7.3. U

In other words, Oort’s Conjecture (O)s, holds precisely when p # 2.

Remark 7.6. (1) Tt is shown [15, Theorem 5.6, p. 270] that if (X, \) is a principally po-
larised supersingular abelian threefold over k of characteristic 2, then Aut(X, \) 2 Cj.
By Corollary 7.5, the smallest group C3 also appears as Aut(X, \) for some (X, \). We
have seen that the unique member (E?, fican) in A3 ; has automorphism group Fj, Xt Ss
(of order 219 - 3%). We expect that 210 - 3* is the maximal order of automorphism groups
of all principally polarised abelian threefolds over k of any characteristic (including
ZEero).

(2) According to Hashimoto’s result [4], we have |A3 ;| = 2 for p = 3. In this case, we have
two isomorphism classes, represented by (E?, fic.n) and (E3, u1). Using Lemma 7.1, we
compute | Aut(E?, piean)| = 27 - 3* and conclude | Aut(E3, p)| = 27 - 3* from the mass
formula Mass(A3z 1) = 1/(2 - 3%).

7.3. The region where t ¢ C(Fs) and (t,u) € D.
In this subsection we consider the region (¢,u) € D and assume that ¢ ¢ C(F,). This
extends the region considered in Subsection 7.2.

Lemma 7.7. Let (X,\) € 51(k) with a(X) = 1. If p > 3 and Aut(X,\) C Cpyq, then
AUt(X, )\) Q {CQ, 04, C@}

Proof. Suppose that Aut(X,\) = Cyy with 2d|(p + 1). Then we have a ring homomorphism
Z]Cs4) — End(X) which maps Cy bijectively to Aut(X, A). The Q-algebra homomorphism

Q[Cog) = [ ] Ql¢a] = End’(X) = Maty(B, o)

d'|2d

factors through an injective Q-algebra homomorphism
[[Ql¢a] = End’(X) = Mats(B, ).
i=1

where {d;|2d} C {d’|2d}. Since the composition gives an embedding Cy; — Aut(X), the
integers {d;} satisfy lem(dy,...,d,) = 2d. Since p { 2d, the algebra Z,[C5,] is étale over
Z, and is the maximal order in Q,[C4,]. This gives rise to an embedding [[_, Z[(4,] ® Z, —
End(X)®Z, ~ End(X [p>]). Thus, the decomposition X [p™] = H; x - - - X H, into a product
of supersingular p-divisible groups shows a(X) > r and hence » = 1. Therefore, there is a
Q-algebra embedding of Q((24) into Mats(B), ~). This implies that ¢ (2d)|6 (where ¢ denotes
Euler’s totien function) and hence 2d € {2,4, 6, 14, 18}.

If 2d = 14, then p = —1 (mod 7) and ord(p) = 2 in (Z/7Z)*. This gives rise to an embed-
ding Z[C14] ® Zy, = Zy2 X L2 X L2 — End(X[p>]) and hence a(X) = 3, a contradiction. If
2d = 18, then p = —1 (mod 9) and ord(p) = 2in (Z/9Z)*. Similarly, we get an embedding
Z(Cis) ® Ly = L2 X Ly X Lz — End(X[p™]) and a(X) = 3, again a contradiction. O

Recall that IF;Q ={a € F;z : aPt!t =1} ~ (), denotes the group of norm one elements
in IF;Q.
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Theorem 7.8. Let the notation be as in Theorem 7.3. Assume that (t,u) € D andt & C(F ).
(1) If p = 2, then Aut(X, \) ~ C3 x Cs.
(2) If p =3 and d(t) = 6, then Aut(X,\) € {Cy, Cy}.
(3) For p > 5, we have the following cases:
() If p=—1 (mod 4), then Aut(X,\) € {Cy, Cy}.
(i) If p= —1 (mod 3), then Aut(X,\) € {Cs, Cg}.
(iii) Ifp =1 (mod 12), then Aut(X, \) ~ Cb.

Proof. (1) By Hashimoto’s result [4], we may assume that (Y5, ;1) = (E3, fican), and by
Lemma 7.1 we have Aut(Y3, ) = diag(O*,0*,0%) - Ss. Then

a
Aut(X,A) =< h € Aut(Ya, p) : ma(h) = a ,a €T}
a
a
=< h € diag(O*,0",0%) : ma(h) = a ,a €T}
a
+uw’
= +wl 0< <5 ~C8x 0,
+w’
where w = (1 +4 + j + k)/2 satisfies w® = 1.
(2) In this case, Gur,(y) = Fy =~ Cy by Corollary 5.18. The proof then follows from the
fact that the reduction-modulo-3 map is injective.
(3) In this case, G(ar,()) = IF;Q ~ (Cp41 by Corollary 5.18. It follows from Lemma 7.2

that Aut(X, \) can be identified with a subgroup of Gy =~ Cpi1 asp > 5. By
Lemma 7.7, Aut(X, ) € {Cy, Cy, Cg}. The assertions for (i), (ii) and (iii) follow from
this assertion.

O

Write D, for D C #,(a = 1) to emphasise its dependence on y« € P(E?). Recall that U, :
P — Sy isthemap (Ys, po) = (Yo, Ao). Put Dy o o)e :={(t,u) € Dyt € C(Fpe)}.

Let A, denote the set of IF,2-isomorphism classes of supersingular elliptic curves £’ over [F
with Frobenius endomorphism 7 = —p. This set is in bijection with the set C1(B,, ) of right
O-ideal classes for a fixed maximal order O in B, o, cf. [18, Theorem 2.1] and [23, Theorem
2.2].

Proposition 7.9.

() If p = 3 and d(t) = 6, then for all (X,\) € V(D o)) With | = Jican, One has
Aut(X, \) ~ Cy.

(2) If p > 5and p = 3 (mod 4), then there exists u € P(E?) such that for all (X, )\) €
V(Do g)e) one has Aut(X, A) ~ Cy.

(3) Ifp > 5and p = 2 (mod 3), then there exists u € P(E?®) such that for all (X, )\) €
V(Do g)e) one has Aut(X, A) = Ce.

(4) If p > 11, then there exists i € P(E?) such that for all (X, )\) € U (Dy,c(r g)e) one
has Aut(X, \) ~ Cs.

Proof. We use the results from Subsection 7.1. If p = 3, then O* = Aut(E) = (i, (). If
p>5and p =2 (mod 3) (resp. p = 3 (mod 4)), there exists a unique supersingular elliptic

curve E' in Ay such that O* := Aut(E’) ~ Cg (resp. Cy). If p > 11, then there exists a
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supersingular elliptic curve E’ in A; such that O* := Aut(E’) ~ C5. Note that if p > 11 then
either h(B, ) > 2 or p = 1 (mod 12). For cases (2), (3), and (4) we choose a polarisation
pu € P(E?) such that (E3, ) ~ (E", ul,.), where p, is the canonical polarisation on £’
as before. (In case (1) pt = fican 1S the unique choice of polarisation.) Then using the same
argument as in Theorem 7.8, the automorphism group Aut(X, A) for (X, A) € W,(Dyc )
consists of elements of the form diag(a,a,a) with a € O* satisfying m3(a) € F} if p = 3
(resp. mp(a) € F), if p > 5). If p = 3, we have m3((i)) = Cy. If p = 3 (mod 4), we have
my((i)) = Cy. pr = 2 (mod 3), we have my(((s)) = Cs. Thus, Aut(X,\) ~ C, forp =3
(mod 4) and Aut(X, ) ~ Cg for p = 2 (mod 3). In case (4), we have Aut(X,\) ~ Cy. O

Remark 7.10. (1) Given Proposition 7.9, it remains to check whether the group C5 also ap-

pears as Aut(X, A) in the region W, (D, c( ) ) for some p1 € P(E®)whenp = 3,5,7.

(2) We assume the condition d(t) = 6 when p = 3 in Theorems 7.3 and 7.8. It remains to
determine which other automorphism groups occur if this condition is dropped.

7.4. The superspecial case.

As we have seen in the previous subsection, to investigate the automorphism groups in some
special region of &, (a = 1), the knowledge of automorphism groups arising from the super-
special locus A3 ; also plays an important role. In this subsection, we discuss only preliminary
results on the automorphism groups of members in A3 ;. A complete list of all possible auto-
morphism groups requires much more work; see Question (2) below.

We briefly recall some results. For p = 2, we have |A3 ;| = 1 and the unique isomorphism
class represented by (X, \) has automorphism group E3, x Ss. For p = 3, we have [A3 ;| = 2
by Hashimoto’s result. In this case, the two isomorphism classes are represented by (E3, fican)
and (E3, j1), respectively, and we have Aut(E?, jican) = T3, % Sz so | Aut(E?, p)| = 27 - 34,
cf. Remark 7.6. For p > 5, the following non-abelian groups occur:

C3xS3 forp=1 (mod 12);

C3x8; forp=3 (mod 4);

C3xS; forp=2 (mod 6),
cf. Lemma 7.1.

Unlike the a-number one case, it is more difficult to construct a member (X, \) in A3, such
that Aut(X, \) ~ Cy. However, it is expected that when p goes to infinity, most members of
Ag4.1 have automorphism group C5. The following result confirms this expectation for g = 3,
based on Hashimoto’s result [4].

Proposition 7.11. Let A3 ;(Cs) := {(X,\) € Ag1 : Aut(X, \) >~ Cy}. Then

[A51(C)l
|As]

Proof. Put hy(p) (C3)|. By [4, Main Theorem], the main term of h(p) = |As1] is

= |Asq
Hi(p):=(p—1)(p*+1)(p*—1)/(2°-3*-5-7) and the error term £(p) is O(p°). Observe that
Mass(As 1) = Hi(p)/2. If (X, \) € A31(Cy), then | Aut(X, )| > 4. This gives the inequality

Mass(Asz1) < h2( ) h(p) 4h2( p) hQi p) + Hy(p )4 (p)
From Mass(A3 1) = Hi(p)/2 one deduces that ho(p) > Hi(p) — (p). Since

(68) —1 asp— oo.

Hi(p) —e(p) _ [A31(Co)] Hi(p) —e(p)
< : <1 and ———F — 1 asp— o0,
Hip)+e() ~  [Asil Hi(p) +<(p) !
we get the assertion (68). ]
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We end the paper with some open problems.

Questions. (1) Let X be a principally polarisable supersingular abelian variety over k, and

(69)

2)

3)

(70)

(71)

let P(X) be the set of isomorphism classes of principally polarisations on X. The mass
of P(X) is defined as

1
Mass(P(X)) = 3 RECTE Sk

AeP(X

One would like to find a mass formula for Mass(P (X)) and understand the relation-
ship between the sets P(X') and A(x ) for a polarisation A € P(X) when dim(X) =
3 . Ibukiyama [7] studied P(X) for dim(X) = 2. He gave a mass formula for
Mass(P(X)) and also showed that P(X) is in bijection with the set A(x ) for any
principal polarisation A on X. Note that not every supersingular abelian threefold is
principally polarisable: by [12, Theorem 10.5, p. 71] we see that the supersingular lo-
cus Sg 4 C 54 ® Fp is three-dimensional if d is divisible by a high power of p, while
dlm(%%l) = 2.

In order to study the automorphism groups of (X, ) with a(X) = 2, we also need to
study the automorphism groups arising from the non-principal genus Aj ,; see Proposi-
tion 3.12. Do we have an asymptotic result similar to Proposition 7.11 for A3 ,? What
are the possible automorphism groups arising from As; or from Aj,? We refer to
Ibukiyama-Katsura-Oort [8], Katsura-Oort [10] and Ibukiyama [6] for detailed investi-
gations for the principal genus case A, ; and the non-principal genus case A, ,. Observe
that there are natural maps Ay X A;y — As; and Ay, X Ay; — Ag,. Following the
references mentioned above, these maps already produce many automorphism groups
of members of Ag; and As .

We say two polarised abelian varieties (X7, A1) and (X, \9) are isogenous, denoted
(X1, A1) ~ (X2, Ag), if there exists a quasi-isogeny ¢ : X; — X5 such that p* Ay = A;.
Let z = (Xo, A\g) € #,1(k) be a geometric point. Define

Ap = {(X,N) € 1 (k) : (X, A) ~ (Xo, Ao) and (X, N)[p™] = (Xo, Ao)[p™]}.

Using the foliation structure on Newton strata due to Oort [16], one can show that the set
A, is finite. Note that any two principally polarised supersingular abelian varieties over
k are isogenous, cf. [19, Corollary 10.3]. Thus, the definition of A, in (70) coincides
that of A, in (3) when z € .7, ;. That is, a mass function

Mass : o7, 1(k) = Q, x+— Mass(A,)

would extend the mass function Mass(z) := Mass(A,) defined on .7, ; (k) as before.
One would like to compute or study the properties of such a mass function on .27, ; (k),
starting in low genus g. This problem may require developing more explicit descriptions
of the foliation structure on Newton strata.

REFERENCES

[1] S.J. Edixhoven, B. J. J. Moonen, and F. Oort, Open problems in algebraic geometry, Bull. Sci. Math. 125
(2001), no. 1, 1-22.

[2] Torsten Ekedahl, On supersingular curves and abelian varieties, Math. Scand. 60 (1987), no. 2, 151-178.

[3] Shushi Harashita, Ekedahl-Oort strata contained in the supersingular locus and Deligne-Lusztig varieties,
J. Algebraic Geom. 19 (2010), no. 3, 419-438.

[4] Ki-ichiro Hashimoto, Class numbers of positive definite ternary quaternion Hermitian forms, Proc. Japan
Acad. Ser. A Math. Sci. 59 (1983), no. 10, 490-493.

[5] Ki-ichiro Hashimoto and Tomoyoshi Ibukiyama, On class numbers of positive definite binary quaternion
Hermitian forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 549-601.

34



[6] Tomoyoshi Ibukiyama, On automorphism groups of positive definite binary quaternion Hermitian lattices
and new mass formula, Automorphic forms and geometry of arithmetic varieties, Adv. Stud. Pure Math.,
vol. 15, Academic Press, Boston, MA, 1989, pp. 301-349.

[7] , Principal polarizations of supersingular abelian surfaces, to appear in J. Math. Soc. Japan (2019).

[8] Tomoyoshi Ibukiyama, Toshiyuki Katsura, and Frans Oort, Supersingular curves of genus two and class
numbers, Compositio Math. 57 (1986), no. 2, 127-152.

[9] Jun-ichi Igusa, Class number of a definite quaternion with prime discriminant, Proc. Nat. Acad. Sci. U.S.A.
44 (1958),312-314.

[10] Toshiyuki Katsura and Frans Oort, Families of supersingular abelian surfaces, Compositio Math. 62 (1987),
no. 2, 107-167.

, Supersingular abelian varieties of dimension two or three and class numbers, Algebraic geometry,
Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 253-281.

[12] Ke-Zheng Li and Frans Oort, Moduli of supersingular abelian varieties, Lecture Notes in Mathematics, vol.
1680, Springer-Verlag, Berlin, 1998.

[13] David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5,
Published for the Tata Institute of Fundamental Research, Bombay, 2008, With appendices by C. P. Ramanu-
jam and Yuri Manin, Corrected reprint of the second (1974) edition.

[14] Frans Oort, Which abelian surfaces are products of elliptic curves?, Math. Ann. 214 (1975), 35-47.

[15] , Hyperelliptic supersingular curves, Arithmetic algebraic geometry (Texel, 1989), Progr. Math.,
vol. 89, Birkhduser Boston, Boston, MA, 1991, pp. 247-284.

[16] , Foliations in moduli spaces of abelian varieties, J. Amer. Math. Soc. 17 (2004), no. 2, 267-296.

[17] Marie-France Vignéras, Arithmétique des algebres de quaternions, Lecture Notes in Mathematics, vol. 800,
Springer, Berlin, 1980.

[18] Jiang Wei Xue and Chia-Fu Yu, On counting certain abelian varieties over finite fields, Acta Math. Sin.
(Engl. Ser.) (2019 (to appear in print)).

[19] Chia-Fu Yu, On the supersingular locus in Hilbert-Blumenthal 4-folds, J. Algebraic Geom. 12 (2003), no. 4,
653-698.

[11]

[20] , On the mass formula of supersingular abelian varieties with real multiplications, J. Aust. Math.
Soc. 78 (2005), no. 3, 373-392.

[21] , The supersingular loci and mass formulas on Siegel modular varieties, Doc. Math. 11 (2006),
449-468.

[22] , On finiteness of endomorphism rings of abelian varieties, Math. Res. Lett. 17 (2010), no. 2, 357-
370.

[23] , Simple mass formulas on Shimura varieties of PEL-type, Forum Math. 22 (2010), no. 3, 565-582.

[24] , On fields of definition of components of the Siegel supersingular locus, Proc. Amer. Math. Soc. 145

(2017), no. 12, 5053-5058.
[25] Chia-Fu Yu and Jeng-Daw Yu, Mass formula for supersingular abelian surfaces, J. Algebra 322 (2009),
no. 10, 3733-3743.

MATHEMATICAL INSTITUTE, UTRECHT UNIVERSITY, UTRECI—IT, THE NETHERLANDS AND
DEPARTMENT OF MATI—IEMATICS, STOCKHOLM UNIVERSITY, STOCKI—IOLM, SWEDEN
E-mail address: V.7 .Karemaker@uu.nl

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, NAGOYA, JAPAN
E-mail address: yobuko@math.nagoya-u.ac. jp

INSTITUTE OF MATHEMATICS, ACADEMIA SINICA AND NATIONAL CENTER FOR THEORETIC SCIENCES,
TAIPEI, TAIWAN
E-mail address: chiafu@math.sinica.edu.tw

35



