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MASS FORMULA AND OORT’S CONJECTURE FOR SUPERSINGULAR

ABELIAN THREEFOLDS

VALENTIJN KAREMAKER, FUETARO YOBUKO, AND CHIA-FU YU

ABSTRACT. Using the theory of polarised flag type quotients, we determine mass formulae for

all principally polarised supersingular abelian threefolds defined over an algebraically closed

field k of characteristic p. We combine these results with computations of the automorphism

groups to study Oort’s conjecture; we prove that every generic three-dimensional principally po-

larised supersingular abelian variety over k of characteristic 6= 2 has automorphism group {±1}.

1. INTRODUCTION

Throughout the paper, let p be a prime number, and let k be an algebraically closed field of

characteristic p. An abelian variety X over k is said to be supersingular if it is isogenous to a

product of supersingular elliptic curves; it is called superspecial if it is isomorphic to a product

of supersingular elliptic curves. To each polarised supersingular abelian variety x = (X0, λ0)
of p-power polarisation degree, we associate a set Λx of isomorphism classes of p-power degree

polarised abelian varieties (X, λ) over k, consisting of those whose associated quasi-polarised

p-divisible groups satisfy (X, λ)[p∞] ≃ (X0, λ0)[p
∞]. It is known that Λx is a finite set, and the

mass of Λx is defined to be the weighted sum

(1) Mass(Λx) :=
∑

(X,λ)∈Λx

1

|Aut(X, λ)| .

If x = (X0, λ0) is a g-dimensional principally polarised superspecial abelian variety, then

Λx coincides with the set Λg,1 of isomorphism classes of all principally polarised superspe-

cial abelian varieties, called the principal genus. The classical mass formula (see Hashimoto-

Ibukiyama [5, Proposition 9] and Ekedahl [2, p. 159]) states that

(2) Mass(Λg) =
(−1)g(g+1)/2

2g

{
g∏

i=1

ζ(1− 2i)

}
·

g∏

i=1

{
(pi + (−1)i

}
,

where ζ(s) denotes the Riemann zeta function.

More generally, for any integer c with 0 ≤ c ≤ ⌊g/2⌋, let Λg,pc denote the finite set of

isomorphism classes of g-dimensional polarised superspecial abelian varieties (X, λ) such that

ker(λ) ≃ α2c
p , where αp is kernel of the Frobenius morphism on the additive group Ga. Then

one also has Λg,pc = Λx for any member x in Λg,pc. The case c = ⌊g/2⌋ is called the non-

principal genus. As shown by Li-Oort [12], both the principal and non-principal genera de-

scribe the irreducible components of the Siegel supersingular locus Sg,1 ⊆ Ag ⊗ Fp, where

Ag is the moduli space of g-dimensional principally polarised abelian varieties. Similarly, the

sets Λg,pc describe the supersingular Ekedahl-Oort (EO) strata in Ag ⊗ Fp, cf. [3]. The explicit

determination of the class number |Λg,pc|, i.e., the class number problem, is a very difficult task

for large g, and is still open for g = 3 and c = 1. Nevertheless, an explicit calculation of the

mass Mass(Λg,pc) is more accessible and provides a good estimate for the class number. This
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mass was calculated explicitly by the third author [21, Theorem 1.4] when g = 2c and extended

to arbitrary g and c by Harashita [3, Proposition 3.5.2].

In [7], Ibukiyama resumes his earlier unpublished results of non-equivalent principal polar-

isations of a supersingular abelian surface X0. He explicitly computes the number of polari-

sations and the mass of the principally polarised surfaces, and shows the agreement with |Λx|
and Mass(Λx), respectively, for a member x = (X0, λ0) in S2,1. As a surprising arithmetic

application, Ibukiyama proved Oort’s conjecture that the automorphism group of any generic

member is C2 for g = 2 and p ≥ 3, and he gave a counterexample for g = 2 and p = 2.

Inspired by Ibukiyama’s work, in this paper we explore the possibility of explicit determina-

tion of Mass(Λx) when g = 3, with similar arithmetic applications in mind. To describe our

results, we need some notation; more details wil be given in Sections 2 and 3.

For any abelian variety X over k, the a-number of X is a(X) := dimkHom(αp, X). For

abelian threefolds X we have a(X) ∈ {1, 2, 3}; when computing the mass, we will separate

into cases based on the a-number.

Further let E be a supersingular elliptic curve over Fp2 with Frobenius endomorphism πE =

−p, and letE = E⊗F
p2
k. For each integer cwith 0 ≤ c ≤ ⌊g/2⌋, we denote by Ppc(E3) the set

of polarisations µ on E3 such that kerµ ≃ α2c
p ; one has Ppc(E3) = Ppc(E

3). As superspecial

abelian threefolds are unique up to isomorphism, there is a natural bijection Ppc(E3) ≃ Λg,pc.

Let µ be a polarisation in P1(E
3
). As alluded to above, Li and Oort [12] show there is a one-

to-one natural correspondence between the set P1(E3) and the set Σ(S3,1) of (geometrically)

irreducible components of S3,1. More precisely, they consider the moduli space Pµ (resp. P ′
µ)

over Fp2 of three-dimensional (resp. rigid) polarised flag type quotients with respect to µ. This

space is an irreducible scheme which comes with a proper projection morphism pr0 : Pµ →
S3,1, such that for each principally polarised supersingular abelian threefold (X, λ) there exists

a µ ∈ P1(E
3
) and a y ∈ Pµ such that pr0(y) = [(X, λ)] ∈ S3,1.

Let C ⊆ P2 be the Fermat curve of degree p + 1 defined by the equation Xp+1
1 + Xp+1

2 +
Xp+1

3 = 0. There exists a structure morphism π : Pµ ≃ PC(O(−1)⊕ O(1)) → C that has a

section s : C
∼−→ T ⊆ Pµ, giving Pµ the structure of a P1-bundle over C, cf. [12, Section

9.4] and Definition 3.10. In particular, for each choice of µ and (X, λ), corresponding to a

y ∈ Pµ, there exists a unique pair (t, u) where t = (t1 : t2 : t3) ∈ C(k) and u = (u1 : u2) ∈
π−1(t) ≃ P1

t (k) that characterises it. Moreover, we have (cf. Proposition 3.11):

(1) If y ∈ T then a(X) = 3;

(2) For any t ∈ C(k), we have t ∈ C(Fp2) if and only if for any y ∈ π−1(t) the corre-

sponding threefold X has a(X) ≥ 2.

(3) We have a(X) = 1 if and only if y /∈ T and π(y) /∈ C(Fp2).

We are now ready to state our first two main results, computing the mass for any principally

polarised supersingular abelian threefold.

Theorem A. (Theorem 4.3) Let x = (X, λ) ∈ S3,1(k) with a(X) ≥ 2, let µ ∈ P1(E
3), and

let y ∈ P ′
µ(k) be such that pr0(y) = [(X, λ)]. Write y = (t, u) where t = π(y) ∈ C(Fp2) and

u ∈ π−1(t) ≃ P1
t (k). Then

Mass(Λx) =
Lp

210 · 34 · 5 · 7 ,
2



where

Lp =





(p− 1)(p2 + 1)(p3 − 1) if u ∈ P1
t (Fp2);

(p− 1)(p3 + 1)(p3 − 1)(p4 − p2) if u ∈ P1
t (Fp4) \ P1

t (Fp2);

2−e(p)(p− 1)(p3 + 1)(p3 − 1)p2(p4 − 1) if u 6∈ P1
t (Fp4);

where e(p) = 0 if p = 2 and e(p) = 1 if p > 2.

Theorem B. (Theorem 5.21) Let x = (X, λ) ∈ S3,1 such that a(X) = 1. For µ ∈ P 1(E3),
consider the associated element y ∈ Pµ which is characterised by the pair (t, u) with t ∈
C(k) \ C(Fp2) and u ∈ P1

t (k). Let Dt be as in Definition 5.16, and let d(t) be as in Defini-

tion 5.12. Then

Mass(Λx) =
p3Lp

210 · 34 · 5 · 7 ,
where

Lp =





2−e(p)p2d(t)(p2 − 1)(p4 − 1)(p6 − 1) if u /∈ Dt;

p2d(t)(p− 1)(p4 − 1)(p6 − 1) if t /∈ C(Fp6) and u ∈ Dt;

p6(p2 − 1)(p3 − 1)(p4 − 1) if t ∈ C(Fp6) and u ∈ Dt.

Our computations of the automorphism groups can be summarised as follows.

Theorem C. Let x = (X, λ) ∈ S3,1(k) and µ ∈ P1(E
3). Consider the associated element

y ∈ Pµ which is characterised by the pair (t, u) with t ∈ C(k) and u ∈ P1
t (k). Let Dt be as in

Definition 5.16 and let d(t) be as in Definition 5.12.

(1) (Theorem 7.3.) Suppose that a(X) = 1, so that t ∈ C(k) \ C(Fp2). Assume that

(t, u) 6∈ D, that is, u 6∈ Dt.

(a) If p = 2, then Aut(X, λ) ≃ C3
2 .

(b) If p ≥ 5, or p = 3 and d(t) = 6, then Aut(X, λ) ≃ C2.

(2) (Theorem 7.8.) Suppose that a(X) = 1 and that (t, u) ∈ D with t 6∈ C(Fp6).
(a) If p = 2, then Aut(X, λ) ≃ C3

2 × C3.

(b) If p = 3 and d(t) = 6, then Aut(X, λ) ∈ {C2, C4}.

(c) For p ≥ 5, we have the following cases:

(i) If p ≡ −1 (mod 4), then Aut(X, λ) ∈ {C2, C4}.

(ii) If p ≡ −1 (mod 3), then Aut(X, λ) ∈ {C2, C6}.

(iii) If p ≡ 1 (mod 12), then Aut(X, λ) ≃ C2.

(3) (Proposition 7.11.) Let Λ3,1(C2) := {(X, λ) ∈ Λ3,1 : Aut(X, λ) ≃ C2} be the set

of superspecial principally polarised abelian threefolds satisfying Oort’s conjecture.

Then
|Λ3,1(C2)|
|Λ3,1|

→ 1 as p→ ∞.

In particular, Part (1) of Theorem C shows that Oort’s conjecture is true precisely for p 6= 2.

That is, every generic principally polarised supersingular abelian threefold over k of character-

istic 6= 2 has automorphism group C2.

The organisation of the paper is as follows. Sections 2 and 3 contain preliminaries, respec-

tively on mass formulae and the structure of the supersingular locus S3,1. In particular, the

strategy we will follow in later sections to obtain mass formulae is outlined at the end of Sec-

tion 2. Sections 4 and 5 determine the mass formulae for supersingular abelian threefolds X ,

respectively with a(X) = 2 (cf. Theorem A) and a(X) = 1 (cf. Theorem B). Section 6 is an
3



independent section which considers in more detail a set-theoretic intersection arising in Sec-

tion 5. The automorphism groups, as well as the implications for Oort’s conjecture, are studied

in Section 7 (cf. Theorem C).
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2. MASS FORMULAE FOR SUPERSINGULAR ABELIAN VARIETIES

2.1. Set-up and notation.

Throughout the paper, let p be a prime number, let g be a positive integer, and let k be an

algebraically closed field of characteristic p. The ground field for objects studied is k, unless

stated otherwise.

For a finite set S, write |S| for the cardinality of S. Let αp be the unique α-group of order p
over Fp; it is defined to be the kernel of the Frobenius morphism on the additive group Ga over

Fp. For a matrix A = (aij) ∈ Matm×n(k) and integer r, write A(pr) := (ap
r

ij ) for the image of

A under the rth Frobenius map. Denote by Ẑ =
∏

ℓ Zℓ the profinite completion of Z and by

Af = Ẑ⊗Z Q the finite adele ring of Q.

Definition 2.1. For any integer d ≥ 1, let Ag,d denote the (coarse) moduli space over Fp of

g-dimensional polarised abelian varieties (X, λ) with polarisation degree deg λ = d2. For any

m ≥ 1, let Sg,pm be the supersingular locus of Ag,pm , which consists of all polarised supersin-

gular abelian varieties in Ag,pm . Then Sg,1 is the moduli space of g-dimensional principally

polarised supersingular abelian varieties. Denote Sg,p∗ = ∪m≥1Sg,pm .

Definition 2.2. (1) If S is a finite set of objects with finite automorphism groups in a specified

category, then we define the mass of S to be the weighted sum

Mass(S) :=
∑

s∈S

1

|Aut(s)| .

(2) For any x = (X0, λ0) ∈ Sg,p∗(k), we define

(3) Λx = {(X, λ) ∈ Sg,p∗(k) : (X, λ)[p
∞] ≃ (X0, λ0)[p

∞]},

where (X, λ)[p∞] denotes the polarised p-divisible group associated to (X, λ). Then Λx is a

finite set; see [20, Theorem 2.1]. The mass of Λx is defined as

Mass(Λx) =
∑

(X,λ)∈Λx

1

|Aut(X, λ)| .

4



2.2. Superspecial mass formulae.

Recall that a superspecial abelian variety over k is an abelian variety isomorphic to a product

of supersingular elliptic curves.

Definition 2.3. Let 0 ≤ c ≤ ⌊g/2⌋ be an integer. We define Λg,pc to be the set of isomorphism

classes of g-dimensional superspecial polarised abelian varieties (X, λ) whose polarisation λ
satisfies ker(λ) ≃ α2c

p . Its mass is

Mass(Λg,pc) =
∑

(X,λ)∈Λg,pc

1

|Aut(X, λ)| .

If x = (X, λ) is any member in Λg,pc, then we have Λx = Λg,pc (cf. Definition 2.2). In

particular, Mass(Λg,pc) is a special case of Mass(Λx). Note that the p-divisible group of a

superspecial abelian variety of given dimension is unique up to isomorphism. Furthermore,

the polarised p-divisible group associated to any member in Λg,pc is unique up to isomorphism,

cf. [12, Proposition 6.1].

Theorem 2.4. (1) For any g ≥ 1, we have

Mass(Λg,1) =
(−1)g(g+1)/2

2g

g∏

i=1

ζ(1− 2i) ·
g∏

i=1

(pi + (−1)i).

(2) For any g ≥ 1 and 0 ≤ c ≤ ⌊g/2⌋, we have

Mass(Λg,pc) =
(−1)g(g+1)/2

2g

g∏

i=1

ζ(1− 2i) ·
g−2c∏

i=1

(pi + (−1)i) ·
c∏

i=1

(p4i−2 − 1)

·
∏g

i=1(p
2i − 1)∏2c

i=1(p
2i − 1)

∏g−2c
i=1 (p2i − 1)

.

Proof. (1) See [2, p. 159] and [5, Proposition 9]. (2) This follows from [3, Proposition 3.5.2]

by the functional equation for ζ(s). See also [21] for a geometric proof in the case where

g = 2c. �

Using the fact that ζ(−1) = −1/12, ζ(−3) = 1/120 and ζ(−5) = −1/(42 · 6), we obtain

the following corollary.

Corollary 2.5. Let g = 3.

(1) If c = 0, then Λg,pc = Λ3,1 consists of all principally polarised superspecial abelian

threefolds, and

(4) Mass(Λ3,1) =
(p− 1)(p2 + 1)(p3 − 1)

210 · 34 · 5 · 7 .

(2) If c = 1, then Λg,pc = Λ3,p consists of all polarised superspecial abelian threefolds

whose polarisation λ has ker(λ) ≃ αp × αp, and

(5) Mass(Λ3,p) =
(p− 1)(p3 + 1)(p3 − 1)

210 · 34 · 5 · 7 .

2.3. From superspecial to supersingular mass formulae.

For a (not necessary principally) polarised supersingular abelian variety x = (X0, λ0) over

k, let Gx be the automorphism group scheme over Z associated to x ; for any commutative ring

R, the group of its R-valued points is defined by

(6) Gx(R) = {g ∈ (End(X0)⊗Z R)
× : gTλ0g = λ0}.

5



Definition 2.6. For a connected reductive group G over Q with finite arithmetic subgroups and

an open compact subgroup U ⊆ G(Af), we define its (arithmetic) mass Mass(G,U) by

Mass(G,U) =

h∑

i=1

1

|Γi|
, Γi := G(Q) ∩ ciUc−1

i ,

where {c1, · · · , ch} is a set of representatives for the double coset space G(Q)\G(Af)/U .

Proposition 2.7. For any object x = (X0, λ0) ∈ Sg,p∗(k), there is a natural bijection of pointed

sets

Λx ≃ Gx(Q)\Gx(Af)/Gx(Ẑ).

Moreover, if (X, λ) is a member of Λx which corresponds to the class [c] under the bijection,

then Aut(X, λ) ≃ Gx(Q) ∩ cGx(Ẑ)c
−1. In particular, we have

Mass(Λx) = Mass(Gx, Gx(Ẑ)),

cf. Definition 2.2.

Proof. See [23, Theorems 2.2 and 4.6]. Also see [25, Proposition 2.1] for a proof sketch. �

Definition 2.8. Let U1, U2 be two open compact subgroups of Gx(Af). Then we define

µ(U1/U2) =
[U1 : U1 ∩ U2]

[U2 : U1 ∩ U2]
.

Interpreting the mass from Definition 2.6 as the volume of a fundamental domain, with

notation as above, we have the following lemma.

Lemma 2.9. Let U1, U2 be two open compact subgroups of Gx(Af ). Then their (arithmetic)

masses compare as

Mass(Gx, U2) = µ(U1/U2)Mass(Gx, U1).

Lemma 2.10. Let X be a supersingular abelian variety over k. Then there exists a pair (Y, ϕ),
where Y is a superspecial abelian variety and ϕ : Y → X is an isogeny such that for any pair

(Y ′, ϕ′) as above there exists a unique isogeny ρ : Y ′ → Y such that ϕ′ = ϕ ◦ ρ.

Dually, there exists a pair (Z, γ), where Z is a superspecial abelian variety and γ : X → Z
such that for any pair (Z ′, γ′) as above there exists a unique isogeny ρ : Z → Z ′ such that

γ′ = ρ ◦ γ.

Proof. See [12, Lemma 1.8]; also see [22, Corollary 4.3] for an independent proof. The proof

of [12, Lemma 1.8] contains a gap; see Remark 3.13 for a counterexample to the argument. �

Definition 2.11. Let X be a supersingular abelian variety over k. We call the pair (Y, ϕ : Y →
X) or the pair (Z, γ : X → Z) as in Lemma 2.10 the minimal isogeny of X .

Proposition 2.12. Let x = (X, λ) ∈ Sg,p∗(k) and let ϕ : X̃ → X be the minimal isogeny

of X . Put x̃ = (X̃, λ̃), where λ̃ := ϕ∗λ. Let (M, 〈 , 〉), (M̃, 〈 , 〉) denote the quasi-polarised

(contravariant) Dieudonné module of X, X̃ , respectively. Then ϕ induces an injective map

ϕ∗ : End(X [p∞]) →֒ End(X̃ [p∞]), or equivalently ϕ∗ : End(M) →֒ End(M̃), and we have

Mass(Λx) = [Aut((X̃, λ̃)[p∞]) : Aut((X, λ)[p∞])] ·Mass(Λx̃)

= [Aut(M̃, 〈 , 〉) : Aut(M, 〈 , 〉)] ·Mass(Λx̃).
(7)

Here the injective map ϕ∗ yields the inclusion map Aut(M, 〈 , 〉) ⊆ Aut(M̃, 〈 , 〉).
6



Proof. This may be regarded as a refinement of [20, Theorem 2.7]. Through the isogeny ϕ, we

may view Gx̃(Ẑ) and ϕ∗Gx(Ẑ) as open compact subgroups of the same group Gx̃(Af). Using

Proposition 2.7 and Lemma 2.9, we see that

Mass(Λx) = µ(Gx̃(Ẑ)/ϕ
∗Gx(Ẑ))Mass(Λx̃)

=
[Gx̃(Ẑ) : Gx̃(Ẑ) ∩ ϕ∗Gx(Ẑ)]

[ϕ∗Gx(Ẑ) : Gx̃(Ẑ) ∩ ϕ∗Gx(Ẑ)]
Mass(Λx̃).

Note that Gx̃(Ẑ) and ϕ∗Gx(Ẑ) differ only at p. By [22, Proposition 4.8], every endomor-

phism of X [p∞] lifts uniquely to an endomorphism of X̃ [p∞]. This shows the injectivity of

the map ϕ∗ : End(X [p∞]) → End(X̃ [p∞]). Therefore, we have the inclusion Gx(Zp) =

Aut((X, λ)[p∞]) →֒ Gx̃(Zp) = Aut((X̃, λ̃)[p∞]) via ϕ∗ and find the first part of Equation (7).

By Dieudonné module theory, for any polarised supersingular abelian variety (X, λ) with

quasi-polarised Dieudonné module (M, 〈 , 〉), we may identifyAut((X, λ)[p∞]) withAut(M, 〈 , 〉).
This yields Equation (7). �

To summarise, the results of this section provide the following strategy for obtaining a mass

formula for any principally polarised supersingular abelian variety:

(a) For any supersingular abelian variety x = (X, λ), construct the minimal isogeny

ϕ : (X̃, λ̃) → (X, λ) from a suitable superspecial abelian variety x̃ = (X̃, λ̃).
(b) Use Theorem 2.4 (or Corollary 2.5 if g = 3) to compute Mass(Λx̃).

(c) Compute the local index [Aut(M̃, 〈, 〉) : Aut((M, 〈, 〉)], cf. (7).

(d) ComputeMass(Λx), i.e., compare Mass(Λx̃) and Mass(Λx) by applying Proposition 2.12.

We will carry out these steps, in particular Step (c), in the next sections in the case where

g = 3. In the next section, we start by studying in detail the moduli space S3,1 of supersingular

principally polarised abelian threefolds and the minimal isogenies (cf. Definition 2.11) between

threefolds.

3. STRUCTURE OF THE SUPERSINGULAR LOCUS S3,1

In this section we describe the supersingular locus S3,1. The structure will be used to deter-

mine the minimal isogenies, cf. Proposition 3.12. Finer structures will be introduced in order

to compute the local index in Step (c) in the previous section.

3.1. The moduli space S3,1.

To describe the moduli space S3,1 of supersingular principally polarised abelian threefolds,

we will use the framework of polarised flag type quotients (for g = 3) as developed by Li and

Oort [12], which we will briefly describe below.

Let E/Fp2 be a supersingular elliptic curve whose Frobenius endomorphism is πE = −p
and denote E = E ⊗F

p2
k. Let P (E3) = P1(E3) (resp. P (E3) = P1(E

3)) be the set of

isomorphism classes of principal polarisations on E3 (resp. E3). Since every polarisation on

E3 is defined over Fp2 , we may identify P (E3) with P (E3). Recall that an α-group of rank r
over an Fp-scheme S is a finite flat group scheme over S which is Zariski-locally isomorphic to

αrp. For a scheme X over S, put X(p) := X ×S,FS
S. where FS : S → S denotes the absolute

Frobenius morphism on S.

Definition 3.1. (cf. [12, Section 3])
7



(1) For any µ ∈ P (E3), a three-dimensional polarised flag type quotient (PFTQ) with

respect to µ is a chain of polarised abelian threefolds over a base Fp2-scheme S

(Y•, ρ•) : (Y2, λ2)
ρ2−→ (Y1, λ1)

ρ1−→ (Y0, λ0),

such that:

(i) (Y2, λ2) = (E3, pµ)×Spec F
p2
S;

(ii) ker(ρi) is an α-group of rank i for 1 ≤ i ≤ 2;

(iii) ker(λi) ⊆ ker(Vj ◦ F
i−j) for 0 ≤ i ≤ 2 and 0 ≤ j ≤ ⌊i/2⌋, where F = FYi/S :

Yi → Y
(p)
i and and V = VYi/S : Y

(p)
i → Yi are the relative Frobenius and Ver-

schiebung morphisms, respectively.

In particular, λ0 is a principal polarisation on Y0. An isomorphism of three-dimensional

polarised flag type quotients is a chain of isomorphisms (αi)0≤i≤2 of polarised abelian

varieties such that α2 = idY2 .

(2) A three-dimensional polarised flag type quotient (Y•, ρ•) is said to be rigid if

ker(Y2 → Yi) = ker(Y2 → Y0) ∩ Y2[F2−i] = ker(F2−i : Y2 → Y
(p2−i)
2 ), for 1 ≤ i ≤ 2,

or equivalently if ker(ρ2) = ker(Y2 → Y0) ∩ Y2[F].
(3) Let Pµ (resp. P ′

µ) denote the moduli space over Fp2 of three-dimensional (resp. rigid)

polarised flag type quotients with respect to µ.

Clearly, each member Yi of (Y•, ρ•) is a supersingular abelian threefold. According to [12,

Section 9.4], Pµ is a two-dimensional geometrically irreducible scheme over Fp2 . The projec-

tion to the last member gives a proper Fp-morphism

pr0 : Pµ → S3,1,

(Y2 → Y1 → Y0) 7→ (Y0, λ0).

Moreover, for each principally polarised supersingular abelian threefold (X, λ) there exist a

µ ∈ P (E3) and a polarised flag type quotient y ∈ Pµ such that pr0(y) = [(X, λ)] ∈ S3,1. Put

differently, it holds that the morphism

(8)
∐

µ∈P (E3)

Pµ → S3,1

is surjective and generically finite.

Roughly speaking, Equation (8) says that each Pµ approximates an irreducible component

of the supersingular locus S3,1. More precisely, one can show the following structure results;

for more details, we refer to [12, Sections 9.3-9.4].

Let C ⊆ P2 be the Fermat curve defined by the equation Xp+1
1 +Xp+1

2 +Xp+1
3 = 0.

Proposition 3.2. The Fermat curve C can be interpreted as the classifying space of isogenies

(Y2, λ2) → (Y1, λ1) whose kernel is locally isomorphic to α2
p. Moreover, there is an isomor-

phism Pµ ≃ PC(O(−1)⊕O(1)) for which the structure morphism π : PC(O(−1)⊕O(1)) →
C corresponds to the forgetful map ((Y2, λ2) → (Y1, λ1) → (Y0, λ0)) 7→ ((Y2, λ2) → (Y1, λ1)).

Proof. Let M2 be the polarised contravariant Dieudonné module of Y2. Choosing an isogeny ρ2
from E3 such that ker(ρ2) ≃ α2

p is equivalent to choosing a surjection of Dieudonné modules

M2 → k2. Since Frobenius F and Verschiebung V act as zero on k2, this is further equivalent

to choosing a one-dimensional subspace of the three-dimensional (since a(Y2) = 3) k-vector

space M2/(F,V)M2 which corresponds to a point (t1 : t2 : t3) ∈ P2 = P((M2/(F,V)M2)
∗).
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The polarisation λ2 = pµ descends to a polarisation λ1 on Y1 through such ρ2, and the

condition ker(λ1) ⊆ Y1[F] is equivalent to the condition

tp+1
1 + tp+1

2 + tp+1
3 = 0,

which describes the Fermat curve C of degree p + 1 in P2. For precise computations, we refer

to [11].

Let M1 be the polarised Dieudonné module of Y1: the polarisation λ1 induces a quasi-

polarisationD(λ1) : M
∨
1 → M1, and we regardM∨

1 as an submodule ofM1 under this injection.

Choosing a second isogeny (Y1, λ1) → (Y0, λ0) is equivalent to choosing a one-dimensional

subspace of the two-dimensional vector space M1/M
∨
1 . Thus each fibre of the structure mor-

phism π : Pµ → C is isomorphic to P((M1/M
∨
1 )

∗) ≃ P1 and this fibration corresponds to a

rank two vector bundle on C. The canonical one-dimensional space (F,V)M2/M
∨
1 ⊆M1/M

∨
1

defines a section s of π : Pµ → C and corresponds to a surjection P → O(−1). By the

duality of polarisations, we see that P is an extension of O(−1) by O(1) and this extension

splits. �

Since the Fermat curve C is a smooth plane curve of degree p + 1, its genus is equal to

p(p − 1)/2. Let U3(Fp) ⊆ GL3(Fp2) denote the unitary subgroup consisting of matrices A
such that ATA(p) = I3. We see that for each A ∈ U3(Fp) and t ∈ C, the matrix multiplication

A · tT lies in C. This gives a left action of U3(Fp) on the curve C. It is known that |U3(Fp)| =
p3(p+ 1)(p2 − 1)(p3 + 1).

Lemma 3.3. We have |C(Fp2)| = p3 + 1. Thus, it is Fp2-maximal and hence Fp4-minimal.

Moreover, we have C(Fp2) = C(Fp4). Furthermore, we have

(9) |C(Fp2i)| =
{
p2i + pi+2 − pi+1 + 1 if i is odd;

p2i − pi+2 + pi+1 + 1 if i is even.

Proof. For each t = (ti) ∈ C(Fp2), let si = tp+1
i . Then si ∈ Fp and s1 + s2 + s3 = 0. So

there are p+ 1 points (si) in P1(Fp). For each point (si), there are p+ 1 (resp. (p+ 1)2) points

(ti) over (si) if some of the si are zero (resp. otherwise); there are 3 points (si) with si = 0 for

some i. Thus,

|C(Fp2)| = (p+ 1− 3)(p+ 1)2 + 3(p+ 1) = p3 + 1.

A curve is Fp2k-maximal (resp. minimal) if its Frobenius eigenvalues over Fp2k all equal −pk
(resp. pk). One checks that this means C is Fp2-maximal. Hence, C is Fp4-minimal and satisfies

|C(Fp4)| = p3 + 1. Since C is Fp2i-maximal (resp. Fp2i-minimal) if i is odd (resp. even), the

formula (9) follows immediately. �

Lemma 3.4. Let t = (t1 : t2 : t3) ∈ C(k). Then t ∈ C(Fp2) if and only if t1, t2, t3 are linearly

dependent over Fp2 .

Proof. See [15, Lemma 2.1]. Alternatively, we give the following independent proof:

The forward implication is immediate, so we will only show the reverse implication. Assume

t1, t2, t3 are linearly dependent over Fp2 . Then there exist a, b ∈ k such that ti = atp
2

i + btp
4

i for

i = 1, 2, 3. Substituting this into the defining equation of C, we obtain

ap+1
3∑

i=1

tp
2+p3

i + abp
3∑

i=1

tp
2+p5

i + apb
3∑

i=1

tp
3+p4

i + bp+1
3∑

i=1

tp
4+p5

i = 0.

Again using the defining equation of C, we see that the first, third, and fourth terms vanish, so

that also abp
∑3

i=1 t
p2+p5

i = abp(
∑3

i=1 t
p3+1
i )p

2
= 0. If a = 0 then the point t = (t1 : t2 : t3) is

defined over Fp4 and hence, by Lemma 3.3, it is defined over Fp2 . If b = 0, then t is defined over
9



Fp2 as well. So we may assume that
∑3

i=1 t
p3+1
i = 0. Let Z := V (Xp3+1

1 + Xp3+1
2 +Xp3+1

3 )
be the Fermat curve of degree p3 + 1. Then t ∈ C ∩ Z. The intersection number of C and Z is

(p+1)(p3+1) and each point of C(Fp2) is in C∩Z. Since |C(Fp2)| = p3+1 by Lemma 3.3, it

is enough to show that for each point s ∈ C(Fp2), the local multiplicity ofC and Z at s is p+1.

Since the unitary group U3(Fp) acts transitively on C(Fp2), we may assume that s = (ζ : 0 : 1)
where ζp+1 = −1. With local coordinates v = X1 − ζ and w = X2, the respective equations

for C and Z at y become vp+1 + ζvp + ζv + wp+1 and vp
3+1 + ζvp

3
+ ζpv + wp

3+1. Now we

may read off that the local multiplicity, i.e., the valuation of v at s, is p+ 1, as required. �

We will denote C0 := C \ C(Fp2). Slightly abusively, we will tacitly switch between the

notations (t1, t2, t3) and (t1 : t2 : t3). For later use, we define the following:

Definition 3.5. For t = (t1, t2, t3) ∈ k3 (viewed as a column vector), let

End(t) = {A ∈ Mat3(Fp2) : A · t ∈ k · t}.
Lemma 3.6. For any t ∈ C0(k), the Fp2-algebra End(t) is isomorphic to either Fp2 or Fp6 .

Proof. For any A ∈ End(t), we have A · t = αAt for some αA ∈ k. The map

End(t) → k

A 7→ αA

is an Fp2-algebra homomorphism. It is injective, i.e., A · t = 0 with t = (t1 : t2 : t3) implies

that A = 0, since the ti are linearly independent over Fp2 by Lemma 3.4. Hence, End(t) is a

finite field extension of Fp2 . Since End(t) ⊆ M3(Fp2) = End((Fp2)
3), we may regard (Fp2)

3

as a vector space over End(t). It follows that [End(t) : Fp2] | 3, as required. �

Lemma 3.7. We have

(10) CM := {t ∈ C0(k) : End(t) ≃ Fp6} = C0(Fp6).

Proof. The containment {t ∈ C0(k) : End(t) ≃ Fp6} ⊆ C0(Fp6) is immediate, because t is an

eigenvector of a matrix in Mat3(Fp2) and can be solved over the ground field Fp6 . We will now

prove the reverse containment.

For each t ∈ C0(Fp6), we construct for each element α ∈ Fp6 a matrix A ∈ Mat3(Fp6) as

follows

A = Aα := (t, t(p
2), t(p

4)) · diag(α, αp2, αp4) · (t, t(p2), t(p4))−1.

Since the ti are linearly independent over Fp2 by Lemma 3.4, the matrix (t, t(p
2), t(p

4)) is invert-

ible. We check that

A(p2) = (t(p
2), t(p

4), t) · diag(αp2, αp4, α) · (t(p2), t(p4), t)−1

= (t, t(p
2), t(p

4)) ·



0 0 1
1 0 0
0 1 0


 · diag(αp2, αp4, α) ·



0 1 0
0 0 1
1 0 0


 · (t, t(p2), t(p4))−1

= A,

and hence A ∈ Mat3(Fp2). We also have that Aα · t = αt. Thus, the map α ∈ Fp6 7→ Aα gives

an isomorphism Fp6 ≃ End(t), as required. �

Remark 3.8.

(1) We can also show that U3(Fp) acts transitively on C0(Fp6) = CM . The action on

C(Fp2) is also transitive, with stabilisers of size p3(p + 1)(p2 − 1); this gives another

proof of the result |C(Fp2)| = p3 + 1.
10



(2) The proof of Lemma 3.6 proves the following more general result. Let F be any field

contained in a field K and t1, t2, . . . , tn be a set of F -linearly independent elements in

K. Put t = (t1, . . . , tn)
T and End(t) := {A ∈ Matn(F ) : A · t ⊆ K · t}. Then End(t)

is a finite field extension of F of degree dividing n.

(3) The proof of Lemma 3.7 proves the following result in linear algebra: Let t1, . . . , tn be

a set of Fq-linearly independent elements in k. Suppose that t = (ti) ∈ Fnqn . Then t is

an eigenvector of a matrix in Matn(Fq).

Definition 3.9. For an abelian variety X over k, its a-number is defined as

a(X) := dimk Hom(αp, X).

So for an abelian threefold X over k, we have a(X) ∈ {1, 2, 3}. For a Dieudonné module M
over k, the a-number of M is defined as a(M) := dim(M/(F,V)M). If M is the Dieudonné

module of X , then a(M) = a(X). When x ∈ Pµ ≃ PC(O(−1) ⊕ O(1)) corresponds to

a polarised flag type quotient ((Y2, λ2) → (Y1, λ1) → (Y0, λ0)), we say that its a-number is

a(x) = a(Y0).

Definition 3.10. The morphism π : Pµ → C admits a section s defined as follows. For a base

scheme S, let ρ2 : (Y2, pµ) → (Y1, λ1) be an object in C(S). Put (Y
(p)
2 , µ(p)) := (Y, µ)×S,FS

S,

where FS : S → S is the absolute Frobenius map. The relative Frobenius morphism F : Y2 →
Y

(p)
2 gives rise to a morphism of polarised abelian schemes F : (Y2, pµ) → (Y

(p)
2 , µ(p)). Since

ker(ρ2) ⊆ ker(F), the morphism factors through an isogeny ρ1 : Y1 → Y
(p)
2 . As ρ∗2ρ

∗
1µ

(p) =
F
∗µ(p) = pµ = ρ∗2λ1, we see that ρ∗1µ

(p) = λ1 and thus obtain a polarised flag type quotient

(Y2, pµ)
ρ2−−−→ (Y1, λ1)

ρ1−−−→ (Y
(p)
2 , µ(p)).

This defines the section s, whose image will be denoted by T .

Proposition 3.11. Let the notation be as above.

(1) We have P ′
µ = Pµ − T .

(2) If x ∈ T then we have a(x) = 3.

(3) For any t ∈ C(k), we have t ∈ C(Fp2) if and only if a(x) ≥ 2 for any x ∈ π−1(t).
(4) For any x ∈ PC(O(−1) ⊕ O(1)), we have a(x) = 1 if and only if x /∈ T and π(x) /∈

C(Fp2).

Proof. See [12, Section 9.4]. �

3.2. Minimal isogenies.

Given a polarised flag type quotient Y2 = E
3 ρ2−→ Y1

ρ1−→ Y0 = X , the composite map

ρ1 ◦ ρ2 : (Y2, λ2) → (Y0, λ0) = (X, λ) is an isogeny from a superspecial abelian variety Y2.
Thus, this isogeny factors through the minimal isogeny of (X, λ):

(Y2, λ2)
ρ1◦ρ2−−−→ (X̃, λ̃)

ϕ−→ (X, λ).

Since every member (X, λ) ∈ S3,1(k) can be constructed from a polarised flag type quotient

(Y•, ρ•), we can construct the minimal isogeny of (X, λ) from (Y•, ρ•).
To describe the minimal isogenies for supersingular abelian threefolds in more detail, in the

following proposition we separate into three cases, based on the a-number of the threefold.

Proposition 3.12. Let (X, λ) be a supersingular principally polarised abelian threefold over k.

Suppose that (X, λ) lies in the image of P ′
µ under the map P ′

µ → S3,1 for some µ ∈ P (E3),
so that there is a unique PFTQ over (X, λ).

(1) If a(X) = 1, then the associated polarised flag type quotient (Y2, λ2)
ρ2−→ (Y1, λ1)

ρ1−→
(Y0, λ0) = (X, λ) gives the minimal isogeny ϕ := ρ1 ◦ ρ2 of degree p3.
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(2) If a(X) = 2, then in the associated polarised flag type quotient Y2 = E
3 → Y1 →

Y0 = X we have a(Y1) = 3, so Y1 is superspecial. Thus, the minimal isogeny is

ρ1 : (Y1, λ1) → (X, λ) of degree p, where ρ∗1λ = λ1 satisfies ker(λ1) ≃ αp × αp.

(3) If a(X) = 3, then X is superspecial. Thus, X is k-isomorphic to E
3

and the minimal

isogeny is the identity map.

Proof. (1) Let M2,M1,M0 denote the Dieudonné modules of Y2, Y1, Y0 = X , respectively.

Then a(M2) = 3. Suppose that a(M0) = 1. By Proposition 3.11, this corresponds to

a point t = (t1 : t2 : t3) 6∈ C(Fp2). We claim that a(M1) = 2, which implies the

statement. The Dieudonné modules satisfy the following inclusions:

M2 ⊇ M1 ⊇ M0

⊇ ⊆ ⊆ ⊇
(F,V)M2 ⊃ (F,V)M1 = (F,V)M0

⊇ ⊆ ⊇ ⊆ ⊇
(F,V)2M2 = (F,V)2M1 = (F,V)2M0.

All inclusions follow from the construction of flag type quotients. For the equalities,

we note the following: Since M2 is superspecial of genus three, we have (F,V)M2 =
FM2, (F,V)

2M2 = pM2, and

dim(M2/FM2) = dim(FM2/pM2) = 3.

It follows from the definition of flag type quotients that dim(M1/FM2) = 1, soM1/FM2

is generated by one element, namely the image of t (abusively again denoted t). So

(F,V)M1/pM2 is two-dimensional and generated by the two elements Ft and Vt, which

are k-linearly independent since t 6∈ C(Fp2), by Lemma 3.4. Using this, we see that

dim(FM2/(F,V)M1) = dim(FM2/pM2)− dim((F,V)M1/pM2) = 1

and a(M1) = dim(M1/(F,V)M1) = 2, as claimed. It follows from dim(M1/M0) = 1
and a(M1) = 2 that dim(M0/(F,V)M1) = 1. As we have assumed that a(M0) =
dim(M0/(F,V)M0) = 1, the latter implies the equality (F,V)M1 = (F,V)M0. Since

dim(M0/(F,V)M1) = 1 and dim(M0/pM2) = 2, one has dim(F,V)M1/pM2) = 2.

Since t1, t2, t3 are Fp2-linearly independent by Lemma 3.4, the vectors F2t, pt and V
2t

in FM2/pFM3 span a 3-dimensional subspace and hence dim((F,V)2M1/pFM2) = 3.

This shows the equality pM2 = (F,V)2M1 = (F,V)2M0.

Now put Φ := 1+FV
−1. We have shown that VΦM0 = (F,V)M1 is not superspecial

and that Φ2M0 = pM2 is superspecial. Therefore, M2 is the smallest superspecial

Dieudonné module containing M0. This proves that ρ1 ◦ ρ2 : Y2 → X is the minimal

isogeny.

(2) When a(M0) = 2, this corresponds to a point t = (t1 : t2 : t3) ∈ C(Fp2). Using the

notation from the previous item, we still have that (F,V)M1/pM2 is generated by Ft
and Vt, but since the ti are Fp2-linearly dependent, we have dim((F,V)M1/pM2) = 1,

so a(M1) = 3. Since ker(λ) ⊆ Y1[F ] ≃ α3
p, we have ker(λ) ≃ α2

p, as claimed.

(3) The fact that a(X) = 3 if and only if X is superspecial is due to Oort, [14, Theorem 2].

�

Remark 3.13. The proof of [12, Lemma 1.8] uses the claim: If X is a g-dimensional super-

singular abelian variety with a(X) < g, and X ′ := X/A(X), where A(X) is the maximal

α-subgroup of X , then a(X ′) > a(X).
Now take Y1 the abelian threefold as in Proposition 3.12(1). We have computed a(Y1) = 2

and a(Y1/A(Y1)) = a((F,V)M1) = 2. This gives a counterexample to the claim.
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4. THE CASE a(X) ≥ 2

Let x = (X, λ) ∈ S3,1(k) with a(X) = 2 and let y ∈ Pµ ≃ P1
C(O(−1) ⊕ O(1)) be the

point corresponding to the PFTQ over it:

(Y2, λ2)
ρ2−→ (Y1, λ1)

ρ1−→ (Y0, λ0) = (X, λ).

By Propositions 3.11 and 3.12, (Y1, λ1) corresponds to a point t = (t1, t2, t3) ∈ C(Fp2) and u ∈
P1
t (k) := π−1(t). Moreover, ρ1 : (Y1, λ1) → (X, λ) is the minimal isogeny. Put x1 = (Y1, λ1).

Then Λx1 = Λ3,p and by Corollary 2.5 and Proposition 2.12 we have

(11) Mass(Λx) =
(p− 1)(p3 + 1)(p3 − 1)

210 · 34 · 5 · 7 · [Aut(M1, 〈 〉) : Aut(M, 〈 , 〉)],

where (M, 〈 , 〉) ⊆ (M1, 〈 , 〉) are the quasi-polarised Dieudonné modules associated to (Y1, λ1) →
(X, λ).

Let M∨
1 denote the dual lattice of M1 with respect to 〈 , 〉. Then one has M∨

1 ⊆ M ⊆ M1

and M/M∨
1 ∈ P(M1/M

∨
1 ) = P1

t (k) is a one-dimensional k-subspace in M1/M
∨
1 . Since the

morphism ρ2 is defined over Fp2 , the threefold Y1 is endowed with the Fp2-structure Y ′
1 with

Frobenius πY ′

1
= −p. The induced Fp2-structure on P1

t is defined by the Fp2-vector space

V0 := M⋄
1 /M

t,⋄
1 , where M⋄

1 := {m ∈ M1 : Fm + Vm = 0} is the skeleton of M1, cf. [12,

Section 5.7].

Since ker(λ1) ≃ αp×αp, the quasi-polarised superspecial Dieudonné module (M1, 〈 , 〉) de-

composes into a product of a two-dimensional indecomposable superspecial Dieudonné module

and a one-dimensional such module. By [12, Proposition 6.1], there is a W -basis e1, e2, e3, f1,

f2, f3 for M1 such that Fei = −Vei = fi, Ffi = −Vfi = −pei. for i = 1, 2, 3,

〈e1, e2〉 = p−1, 〈f1, f2〉 = 1, 〈e3, f3〉 = 1,

and other pairings are zero. Then M∨
1 is spanned by pe1, p2, e3, f1, f2, f3 and M1/M

∨
1 =

Spank{e1, e2}. Let u = (u1 : u2) ∈ P1
t (k) be the projective coordinates of the point cor-

responding to M/M∨
1 . That is, M/M∨

1 is the one-dimensional subspace spanned by u =
u1ē1 + u2ē2, where ēi denotes the image of ei in M1/M

∨
1 .

If u ∈ P1
t (Fp2), then a(M) = 3 and Mass(Λx) is already computed in Corollary 2.5.

Suppose then that u 6∈ P1
t (Fp2). In this case, M1 (resp. M∨

1 ) is the smallest (resp. maximal)

superspecial Dieudonné module containing (resp. contained in) M . Thus,

End(M) = {g ∈ End(M1) : g(M
∨
1 ) ⊆M∨

1 , g(M) ⊆M}.
Consider the reduction map

m : End(M1) = End(M⋄
1 ) ։ End(M⋄

1 /M
t,⋄
1 ) = EndF

p2
(V0) = Mat2(Fp2).

It is clear that End(M) contains ker(m) and that m induces a surjective map

m : End(M) ։ m(End(M)) = {g ∈ Mat2(Fp2) : g · u ⊆ k · u}.
Write End(u) := {g ∈ Mat2(Fp2) : g · u ⊆ k · u}.

Lemma 4.1.

(1) If u ∈ P1
t (Fp4) − P1

t (Fp2), then End(u) ⊆ Mat2(Fp2) is an Fp2-subalgebra which is

isomorphic to Fp4 .

(2) If u ∈ P1
t (k)− P1

t (Fp4), then End(u) = Fp2 .

Proof. This is a simpler version of Lemmas 3.6 and 3.7 so we omit the proof; cf. also [25,

Section 3]. �
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Put 〈 , 〉1 := p〈 , 〉. Then 〈 , 〉1 induces a non-degenerate alternating pairing, again denoted

〈 , 〉1 : V0 × V0 → Fp2 . The reduction map m then gives rise to the following map

(12) m : Aut(M1, 〈 , 〉) = Aut(M1, 〈 , 〉1) → Aut(V0, 〈 , 〉1) ≃ SL2(Fp2).

Lemma 4.2. The map m : Aut(M1, 〈 , 〉) → Aut(V0, 〈 , 〉1) is surjective.

Proof. Since Y1 is supersingular, we have that End(Y1)⊗ Zp ≃ End(M1) and that Gx1(Zp) ≃
Aut(M1, 〈 , 〉); recall the notation from (6). The group scheme Gx1 ⊗ Zp is a parahoric group

scheme and in particular is smooth over Zp. Thus, the map Gx1(Zp) → Gx1(Fp) is surjective.

Now Aut(V0, 〈 , 〉1) = ResF
p2/Fp

SL2 viewed as an algebraic group over Fp is a reductive quo-

tient of the special fibre Gx1 ⊗ Fp. Therefore, the map Gx1(Fp) → Aut(V0, 〈 , 〉1) = SL2(Fp2)
is also surjective. This proves the lemma. �

We now prove the main result of this section.

Theorem 4.3. Let x = (X, λ) ∈ S3,1(k) with a(X) ≥ 2 and let y ∈ P ′
µ(k) be a lift of x for

some µ ∈ P (E3). Write y = (t, u) where t = π(y) ∈ C(Fp2) and u ∈ π−1(t) = P1
t (k). Then

(13) Mass(Λx) =
Lp

210 · 34 · 5 · 7 ,
where

(14) Lp =





(p− 1)(p2 + 1)(p3 − 1) if u ∈ P1
t (Fp2);

(p− 1)(p3 + 1)(p3 − 1)(p4 − p2) if u ∈ P1
t (Fp4) \ P1

t (Fp2);

2−e(p)(p− 1)(p3 + 1)(p3 − 1)p2(p4 − 1) if u 6∈ P1
t (Fp4);

where e(p) = 0 if p = 2 and e(p) = 1 if p > 2.

Proof. By Lemma 4.2,

[Aut(M1, 〈 , 〉) : Aut(M, 〈 , 〉)] = [SL2(Fp2) : SL2(Fp2) ∩ End(u)×].

By Lemma 4.1,

SL2(Fp2) ∩ End(u)× =

{
F1
p4 if u ∈ P1

t (Fp4) \ P1
t (Fp2);

{±1} if u 6∈ P1
t (Fp4).

It follows that

[Aut(M1, 〈 〉) : Aut(M, 〈 , 〉)] =
{
p2(p2 − 1) if u ∈ P1

t (Fp4) \ P1
t (Fp2);

|PSL2(Fp2)| if u 6∈ P1
t (Fp4),

so the theorem follows from (11). �

5. THE CASE a(X) = 1

Suppose that (X, λ) is a supersingular principally polarised abelian threefold over k with

a(X) = 1. By Proposition 3.12(1), there is a minimal isogeny ϕ : (Y2, µ) → (X, λ), where

Y2 = E
3
, and where ϕ∗λ = pµ for µ ∈ P (E3) a principal polarisation. In this section we will

compute the local index

(15) [Aut((Y2, µ)[p
∞]) : Aut((X, λ)[p∞])].

Let M and M2 be the Dieudonné modules ofX and Y2, respectively. Together with the induced

(quasi-)polarisations, we have (M, 〈, 〉) and (M2, 〈, 〉2), where 〈, 〉2 = p〈, 〉 is again a princi-

pal polarisation. (Note that (M2, 〈, 〉2) is the quasi-polarised Dieudonné module associated to

(Y2, µ), and not to (Y2, pµ).) The proof of Proposition 3.12(1) shows that every automorphism
14



of M can be lifted to an automorphism of M2, i.e., that Aut((M, 〈, 〉)) ⊆ Aut((M2, 〈, 〉2)).
Then equivalently to (15), cf. Proposition 2.12, we will compute

(16) [Aut((M2, 〈, 〉2)) : Aut((M, 〈, 〉))].
5.1. Determining Aut((M2, 〈, 〉2)).

Let W =W (k) denote the ring of Witt vectors over k. Choose aW -basis e1, e2, e3, f1, f2, f3
for M2 such that

(17) Fei = −Vei = fi, Ffi = −Vfi = −pei, 〈ei, fj〉2 = δij , 〈ei, ej〉2 = 〈fi, fj〉2 = 0,

for all i, j ∈ {1, 2, 3}.

Let Dp be the division quaternion algebra over Qp and let ODp
denote its maximal order. We

also write Dp = Qp2 [Π] and ODp
= Zp2[Π], where Zp2 = W (Fp2) and Qp2 = FracW (Fp2),

and where Π2 = −p and Πa = aΠ for any a ∈ Qp2 . Here a 7→ a denotes the non-trivial

automorphism of Qp2/Qp. If we let ∗ denote the canonical involution of Dp, then a∗ = a for

any a ∈ Qp2 , and Π∗ = −Π.

Lemma 5.1. We have End(M2) ≃ Mat3(ODp
) and hence Aut(M2) ≃ GL3(ODp

) (not taking

the polarisation into account).

Proof. We have End(M2) = EndODp
(M♦

2 ), where M♦
2 := {m ∈M2 : Fm+Vm = 0} denotes

the skeleton of M2; this is an ODp
-module where Π acts by F and Π∗ acts by V. Now the

result follows by using the basis e1, e2, e3 for Mat3(ODp
)op (the opposite algebra); we choose

a convention where the matrices act on the left. We fix the isomorphism Mat3(ODp
)op ≃

Mat3(OD) by sending A to A∗. �

We fix the identification End(M2) = Mat3(OD) by the isomorphism chosen in Lemma 5.1

with respect to the basis in (17).

Lemma 5.2. We have Aut(M2, 〈, 〉2) ≃ {A ∈ GL3(ODp
) : A∗A ≃ I3}.

Proof. It suffices to check that 〈A · ei, ej〉2 = 〈ei, A∗ · ej〉2 for any A ∈ Mat3(ODp
) and any

i, j ∈ {1, 2, 3}. Write A = (aij) and A∗ = (a′ij) with aij = cij + dijΠ for cij, dij ∈ Zp2 , and

with a′ij = a∗ji. Then

〈A · ei, ej〉2 = 〈
∑

k

aikek, ej〉2 = 〈dijfj , ej〉2 = −dij

coincides with

〈ei, A∗ · ej〉2 = 〈ei,
∑

k

a′jkek〉2 = 〈ei, a′jiei〉2 = 〈ei, cijei − dijfi〉2 = −dij ,

as required. �

5.2. Endomorphisms and automorphisms modulo pM2.

The proof of Proposition 3.12(1) contains the important observation that pM2 ⊆ M . This

allows us to consider the endomorphisms and automorphisms of both M2 and M modulo p
(i.e., reducing modulo pM2) and modulo Π. We first define these objects.

Definition 5.3. Let mp denote the reduction-modulo-p map and mΠ the reduction-modulo-Π
map. By Lemma 5.1, for M2 we have

(18) End(M2) ≃ Mat3(ODp
)
mp−→ Mat3(Fp2[Π])

mΠ−−→ Mat3(Fp2).

On the level of automorphisms (respecting the polarisation) we get

(19) Aut(M2, 〈, 〉2)
mp−→ G(M2,〈,〉2)

mΠ−−→ G(M2,〈,〉2),
15



where

(20) G(M2,〈,〉2) := {A+BΠ ∈ GL3(Fp2[Π]) : AA
T
= I3, B

TA = A
T
B},

(here, BT denotes the transpose of the matrix B), and where

(21) G(M2,〈,〉2) := {A ∈ GL3(Fp2) : A
∗A = I3}.

Definition 5.4. For M we have End(M) = {g ∈ End(M2) : g(M) ⊆ M} and Aut(M) =
{g ∈ Aut(M2) : g(M) =M}, and

(22) Aut(M, 〈, 〉) = {g ∈ Aut(M2, 〈, 〉2) : g(M) =M}.
Under the same maps mp and mΠ, we find

(23) EM := mp(End(M)) = {A ∈ Mat3(Fp2[Π]) : A ·M/pM2 ⊆M/pM2}
and EM := mΠ(EM ) ⊆ Mat3(Fp2). These fit in the diagram

(24)

End(M) End(M2) = Mat3(ODp
)

EM Mat3(Fp2[Π]))

EM Mat3(Fp2)

mp mp

mΠ mΠ

in which all horizontal maps are inclusion maps and the left vertical maps are the surjective

reduction maps.

On the level of automorphisms, we let

(25) GM := mp(Aut(M)) = {A ∈ GL3(Fp2[Π]) : A ·M/pM2 ⊆M/pM2}
and GM := mΠ(GM). For the polarised versions, since ϕ∗λ = pµ, we obtain

(26) G(M,〈,〉) := {g ∈ G(M2,〈,〉2) : g(M/pM2) ⊆M/pM2}
and

(27) G(M,〈,〉) := {g ∈ G(M2,〈,〉2) : g(M/pM2) ⊆M/pM2}.
Denote the group of three-by-three symmetric matrices over Fp2 by S3(Fp2); this group has

cardinality p12 (since it a six-dimensional Fp2-vector space). Also recall that the group U3(Fp)
of three-by-three unitary matrices with entries in Fp2 has cardinality p3(p+1)(p2− 1)(p3+1).

Lemma 5.5. In Equation (20) we have A ∈ U3(Fp) and BTA ∈ S3(Fp2). Hence,

(28) |G(M2,〈,〉2)| = |U3(Fp)| · |S3(Fp2)| = p15(p+ 1)(p2 − 1)(p3 + 1).

Remark 5.6. Now we note, cf. (16), that

(29) [Aut((M2, 〈, 〉2)) : Aut((M, 〈, 〉))] = [G(M2,〈,〉2) : G(M,〈,〉)].

In light of Lemma 5.5, it now suffices to compute [G(M2,〈,〉2) : G(M,〈,〉)]. This will take up the

remainder of this section.

We start by studying the unpolarised automorphismsGM2 . Thus, let g = (aij+bijΠ)1≤i,j≤3 ∈
GL3(Fp2(Π)) be an (unpolarised) automorphism of M2/pM2. If we take ē1, ē2, ē3, f̄1, f̄2, f̄3

16



(i.e., the reductions of e1, . . . , f3 in the previous subsection) as a basis of M2/pM2 in this

order, g can be expressed by a matrix of the form

g =

(
A 0
B A(p)

)
,(30)

where A = (aij)1≤i,j≤3,B = (bij)1≤i,j≤3, and A(p) = (apij)1≤i,j≤3.

Recall from Proposition 3.12(1) that the polarised flag type quotient Y2 → Y1 → X corre-

sponds to a point t = (t1 : t2 : t3) ∈ C0(k) such thatM1/FM2 is generated by t1ē1+t2ē2+t3ē3,

where M1 is the Dieudonné module of Y1. We choose a new basis for M2/pM2 as follows:

Ē1 :=
∑

i=1,2,3

tiēi, Ē2 :=
∑

i=1,2,3

tpi ēi, Ē3 :=
∑

i=1,2,3

tp
−1

i ēi,

F̄1 :=
∑

i=1,2,3

tif̄i, F̄2 :=
∑

i=1,2,3

tpi f̄i, F̄3 :=
∑

i=1,2,3

tp
−1

i f̄i.

(This is a basis by Lemma 3.4.) Using this basis, g is expressed as

g =

(
T−1AT 0
T−1BT T−1A(p)T

)
,(31)

where

T :=



t1 tp1 tp

−1

1

t2 tp2 tp
−1

2

t3 tp3 tp
−1

3


 .(32)

Now we determine the group GM ⊆ GL3(Fp2[Π]) of elements preserving M/pM2. Any

such element will also preserve M1/pM2. We prove the following proposition.

Proposition 5.7. Let g ∈ GL3(Fp2[Π]) be an automorphism of M2/pM2, expressed as in (30).

Then g ∈ GM (i.e., g preserves M/pM2) if and only if the following hold:

(a) We have A · t = αt for some α ∈ k, i.e., A ∈ End(t).

(b) The (1, 1)-component of the matrix T−1BT is u2u
−1
1 (α− αp

3
).

Proof. For an A ∈ End(t) (see Definition 3.5) with eigenvalue α, it holds by definition that

T−1AT =



α ∗ ∗

∗ ∗
∗ ∗


 ,T−1A(p)T =



∗
∗ αp

∗ αp
−1


 .(33)

As det(A) = α1+p2+p−2
and det(A(p)) = det(A)p, we see that

T−1A(p)T =



αp

3

∗ αp

∗ αp
−1


 .(34)

By Proposition 3.12(1), the quotientM1/pM2 is a two dimensional k-vector space generated by

Ē1 and F̄1. AsM∨
1 = (F,V)M1 = pM2, we find thatM/pM2 ⊆M1/pM2 is a one-dimensional

k-vector space. Take u1, u2 ∈ k so that M/pM2 is generated by the image of u1Ē1 + u2F̄1. As

M 6= pM2, we see that u1 6= 0.

We see that if g ∈ GL3(Fp2[Π]) preserves M1/(F,V)M2, then it induces an automorphism of

M1/(F,V)M1 = M1/pM2 which is expressed as
( α

∗ αp3

)
by (31), (33), and (34). Moreover, g

also preserves M/(F,V)M1 = M/pM2 if and only if the column vector
( α

∗ αp3

)
( u1u2 ) is in the

subspace spanned by ( u1u2 ). This is equivalent to the entry ∗ being equal to u2u
−1
1 (α−αp3). �
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Remark 5.8. (1) It follows from the construction of polarised flag type quotients that for

(X, λ) with a(X) = 1 and a choice µ ∈ P (E3) together with an indentification

(X̃, λ̃) = (E
3
, pµ), there exists a unique pair (t, u) where t = (t1 : t2 : t3) ∈ C0(k)

and u = (u1 : u2) ∈ P1(k) as in the proof of Proposition 5.7. For the rest of the section,

we will work with these (t, u).
(2) The coordinates (t, u) in (1) also give rise to a trivialisation C0 × P ≃ PC0 , where

PC0 := Pµ ×C C
0, as follows. By Proposition 3.2, points in PC0 correspond to pairs

(M 1,M): here M 1 ⊆ M 2 is a four-dimensional subspace generated by the subspace

VM 2 and E1 = t1ē1 + t2ē2 + t3ē3 with (t1 : t2 : t3) ∈ C0, and M ⊆ M2 is a three-

dimensional subspace with M
⊥

1 ⊆M ⊆M 1, where M
⊥

1 is the orthogonal complement

of M 1 with respect to 〈 , 〉2. The two-dimensional vector spaces M1/M
⊥

1 for t ∈ C0

form a rank two vector bundle V = O(1)⊕O(−1)|C0 over C0. As shown in the proof

of Proposition 5.7, the images of E1 and F 1 in M1/M
⊥

1 (again denoted by E1 and

F 1 for simplicity) form a basis, and give rise to two global sections Ẽ1 and F̃1 of V

respectively (note that both E1 and F 1 are vector-valued functions in t1, t2, and t3).

Then the desired trivialisation C0 × P
∼−→ PC0 ≃ P(V ) is given by (t, (u1 : u2)) 7→

[u1Ẽ1(t) + u2F̃1(t)]. Since M2 is the Dieudonné module of E
3
, the vector space M 2

has an Fp2-structure, so we see that this trivialisation is defined over Fp2 .

Now let t ∈ C0(k) and u = (0 : 1). The corresponding subspace M is generated by

F 1 and M
⊥

1 = (F,V)M 1. Therefore, we have M = VM 2, which corresponds a point

in T . It follows that under the above trivialisation, T ≃ C0 × {∞}.

The following lemma follows from Lemma 3.6, Lemma 3.7, and Proposition 5.7. It describes

the polarised elements g ∈ G(M2,〈,〉2) that preserve M1/pM2: for such g of the form (30),

Proposition 5.7(1) implies that A ∈ End(t), while Definition 5.3(20) implies that A is unitary.

Lemma 5.9. Let t = (t1 : t2 : t3) ∈ C0(k).

(1) When t /∈ C(Fp6), we have

End(t) ∩ U3(Fp) ≃ {α ∈ Fp2 : α
p+1 = 1}.

(2) When t ∈ C(Fp6), we have

End(t) ∩ U3(Fp) ≃ {α ∈ Fp6 : α
p3+1 = 1}.

Proof. (1) This follows since a diagonal matrix αI3 with α ∈ Fp2 is unitary if and only if

αp+1 = 1.

(2) Take any A ∈ End(t) ∩ U3(Fp). The eigenvalues of A(p)T are αp, αp
3
, αp

5
where α

is the eigenvalue of A. As A is unitary, α−1 is also an eigenvalue, so we have α−1 ∈
{αp, αp3, αp5}. In each case, we have αp

3+1 = 1.

For the converse, choose any α ∈ Fp6 such that αp
3+1 = 1. By the proof of

Lemma 3.6, the corresponding A ∈ End(t) is given by

A = (t, t(p
2), t(p

4))diag(α, αp
2

, αp
4

)(t, t(p
2), t(p

4))−1.

We compute that

AA(p)T = (t, t(p
2), t(p

4))




s−1

s−p
2

s−p


 (t(p), t(p

3), t(p
5))T

where s = tp
3+1

1 + tp
3+1

2 + tp
3+1

3 . That is, AA(p)T is independent of α. By the case

α = 1, we have AA(p)T = 1.
18



�

Suppose now that we have g ∈ G(M2,〈,〉2) of the form (30) preserving M1/pM2, i.e., we have

A ∈ End(t) ∩ U3(Fp) by Lemma 5.9. We now determine the conditions on B so that g also

preserves M/pM2, i.e., so that g ∈ G(M,〈,〉). By (20), B satisfies a symmetric condition.

Let S3(Fp2)A (for A ∈ End(t) ∩ U3(Fp) as above) be the Fp2-vector space consisting of

matrices of the form SA for some S ∈ S3(Fp2). Define a homomorphism of Fp2-vector spaces

ψt,A :S3(Fp2)A→ k

SA 7→ the (1, 1)-component of T−1SAT.
(35)

Similarly define a homomorphism

ψt :S3(Fp2) → k

S 7→ the (1, 1)-component of T−1ST.
(36)

Using these notations, we have the following proposition.

Proposition 5.10. The group G(M,〈,〉) consists of the matrices of the form
(
A 0
SA A(p)

)

satisfying the following conditions:

(1) A ∈ End(t) ∩ U3(Fp) with eigenvalue α;

(2) S ∈ S3(Fp2) is a symmetric matrix; and

(3) ψt,A(SA) = u2u
−1
1 (α− αp

3
).

The third condition is equivalent to

(3’) ψt(S) = u2u
−1
1 (1− αp

3−1).

Proof. It follows from (26) and Proposition 5.7 that for A ∈ End(t) ∩ U3(Fp) with eigenvalue

α, the matrix

(
A 0
B A(p)

)
is an element ofG(M,〈,〉2)∩G(M,〈,〉) if and only ifBA−1 is a symmetric

matrix and the (1, 1)-component of the matrix T−1BT is u2u
−1
1 (α− αp

3
). The latter condition

amounts to Condition (3) (and (3’)) by noticing that since T−1AT is of the form


α ∗ ∗

∗ ∗
∗ ∗




where α is the eigenvalue of A, we have a commutative diagram

(37)

S3(Fp2) k

S3(Fp2)A k

ψx

·A ·α

ψt,A

,

where the left vertical arrow is multiplying A from the right and the right vertical arrow is

multiplying with α. �

The following corollary follows immediately from Proposition 5.10 and summarises the re-

sults in this subsection.

Corollary 5.11. We have

(38) |G(M,〈,〉)| = |{A ∈ End(t) ∩ U3(Fp) : u2u
−1
1 (1− αp

3−1) ∈ Im(ψt)}| · | ker(ψt)|.
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5.3. Analysing Im(ψt) and ker(ψt).
In the following subsection, we will make Corollary 5.11 more explicit by analysing the

image and kernel of the homomorphism ψt.

Definition 5.12. In the notation as above, we set

(39) d(t) := dimF
p2
(Im(ψt)).

As dimF
p2
(S3(Fp2)) = 6, we see that d(t) ≤ 6, and that

(40) | ker(ψt)| = p2(6−d(t)).

We prove the following precise result about the values of d(t).

Proposition 5.13. We have 3 ≤ d(t) ≤ 6. When p = 2, we have d(t) = 3. Let v =
(t21, t

2
2, t

2
3, t1t2, t1t3, t2t3) and let

∆ =
{
det

(
vT , (v(p

2))T , (v(p
4))T , . . . , (v(p

10))T
)
= 0

}
.

When p 6= 2, we have:

d(t) = 3 if and only if t ∈ C0(Fp6);

d(t) = 4 if and only if t ∈ C0(Fp8);

d(t) = 5 if and only if t ∈ ∆ ∩ C0 \
(
C0(Fp6)∐ C0(Fp8)

)
;

d(t) = 6 if and only if t 6∈ ∆ ∩ C0.

(41)

Proof. Since t ∈ C0(k), we see that ti 6= 0, and without loss of generality we assume that

t3 = 1. For 1 ≤ i, j ≤ 3, let Iij be the three-by-three matrix whose (i, j)-component is one and

where all other entries are zero. Then I11, I22, I33, I12 + I21, I13 + I31, I23 + I32 is a basis for

S3(Fp2) over Fp2 . We set

w1 = ψt(I11), w2 = ψt(I22), w3 = ψt(I33),

w4 = ψt(I12 + I21), w5 = ψt(I13 + I31), w6 = ψt(I23 + I32).
(42)

Lemma 5.14. The wi in (42) satisfy the following relations:

w1 = t21w3, w2 = t22w3,

w4 = 2t1t2w3,

w5 = 2t1w3, w6 = 2t2w3,

and w3 is not zero.

Proof of lemma. The inverse matrix of T is

T−1 = det(T)−1



tp2 − tp

−1

2 tp
−1

1 − tp1 tp1t
p−1

2 − tp
−1

1 tp2
tp

−1

2 − t2 t1 − tp
−1

1 tp
−1

1 t2 − t1t
p−1

2

tp2 − t2 t1 − tp1 tp1t2 − t1t
p
2


 .

Since for any matrices M = (mij), N = (nij) and L = (lij) the (1, 1)-component of MNL is

given by
∑

i,jm1inijlj1, we have

w1 = det(T)−1(tp2 − tp
−1

2 )t1;

w2 = det(T)−1(tp
−1

1 − tp1)t2.
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Furthermore, w3 is given by

w3 = det(T)−1(tp1t
p−1

2 − tp
−1

1 tp2)

= det(T)−1t−1
1 (tp+1

1 tp
−1

2 − tp
−1+1

1 tp2)

= det(T)−1t−1
1 (tp2 − tp

−1

2 ).

For the last equality, we used equations tp+1
1 + tp+1

2 + 1 = 0 and tp
−1+1

1 + tp
−1+1

2 + 1 = 0.

Similarly, we see that w3 = det(T)−1t−1
2 (tp

−1

1 − tp1). These computations imply the first two

relations of the assertion, and since t1, t2 6∈ Fp2 , we see that w3 is not zero. Furthermore, we

compute that

w4 = det(T)−1((tp2 − tp
−1

2 )t2 + (tp
−1

1 − tp1)t1)

= det(T)−1(tp+1
2 − tp

−1+1
2 + tp

−1+1
1 − tp+1

1 )

= 2 det(T)−1t2(t
p
2 − tp

−1

2 );

w5 = det(T)−1((tp2 − tp
−1

2 ) + (tp1t
p−1

2 − tp
−1

1 tp2)t1)

= det(T)−1(tp2 − tp
−1

2 + tp+1
1 tp

−1

2 − tp
−1+1

1 tp2)

= 2 det(T)−1(tp2 − tp
−1

2 ).

Similarly, we see that w6 = 2det(T)−1(tp
−1

1 − tp1), so we obtain the remaining relations. �

When p 6= 2, we see from Lemma 5.14 that

d(t) = dimF
p2
〈w1, w2, w3, w4, w5, w6〉 = dimF

p2
〈1, t1, t2, t1t2, t21, t22〉.

In particular, this implies that

d(t) ≥ dimF
p2
〈w3, w5, w6〉 = dimF

p2
〈1, t1, t2〉 = 3.

When p = 2, by Lemma 3.4 and Lemma 5.14, we see that d(t) = 3. So assume p 6= 2, and

consider (41).

By construction (since t3 = 1), we have t ∈ ∆ if and only if dimF
p2
〈1, t1, t2, t1t2, t21, t22〉 ≤ 5.

Hence we see that t ∈ ∆ ∩ C0 if and only if d(t) ≤ 5, which gives the required statement

for d(t) = 6. Also note that if d(t) ≤ 5 then there exists some conic Q/Fp2 with equation

a1 + a2t1 + a3t2 + a4t1t2 + a5t
2
1 + a6t

2
2 = 0 such that t ∈ C0 ∩ Q. Similarly if d(t) ≤ 4 then

there exist two independent conics Q1, Q2 such that t ∈ C0 ∩Q1 ∩Q2. In this case, Q1 and Q2

do not have a common component (even defined over Fp). Otherwise, the intersection Q1 ∩Q2

must be a line L defined over Fp2 (because we require Q1 6= Q2) and Q1 = L ∪ L1 for another

line L1 defined over Fp2 . This implies that t ∈ L or t ∈ L1, a contradiction by Lemma 3.4. If

d(t) ≤ 3 there exist three independent conics Q1, Q2, Q3 such that t ∈ C0 ∩Q1 ∩Q2 ∩Q3.

If t ∈ C0(Fp2a) then d(t) ≤ a, i.e., if 2 ≤ degF
p2
(t) ≤ a then d(t) ≤ a, for any value of

a. This shows in particular that if t ∈ C0(Fp6), then d(t) = 3, cf. Lemma 3.4. Conversely,

since |Q1 ∩ Q2| ≤ 4 by Bézout’s theorem we see that if d(t) ≤ 4 then degF
p2
(t) ≤ 4. That is,

then t ∈ C0(Fp8) ∪ C0(Fp6); note that by Lemma 3.3 we have C0(Fp4) = ∅. If d(t) = 3, then

the Fp2-subspace 〈1, t1, t2, t21, t22, t1t2〉 is equal to the Fp2-subspace U spanned by 1, t1, t2. Since

t1U ⊂ U and t2U ⊂ U , the algebra Fp2[t1, t2] = U has dimension three and degF
p2
(t) = 3.

This implies that d(t) = 3 if and only if t ∈ C0(Fp6) and hence d(t) = 4 if and only if

t ∈ C0(Fp8). The statement for d(t) = 5 now follows. �
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Remark 5.15. We provide another proof of the implication d(t) = 3 =⇒ degF
p2
(t) = 3,

since this information may also be useful. Suppose P1, P2, P3, P4 ∈ P2(K), where K is a field,

are four distinct points not on the same line. Then the conics passing through them form a

P1-family. To see this, suppose Q is represented by F (t) = 0, where F (t) = a1t
2
1 + a2t

2
2 +

a3t
2
3 + a4t1t2 + a5t1t2 + a6t1t3. By assumption P1, P2, P3 are not on the same line. Choose a

coordinate for P2 over K such that P1 = (1 : 0 : 0), P2 = (0 : 1 : 0) and P3 = (0 : 0 : 1). Then

a1 = a2 = a3 = 0. The point P4 = (α1 : α2 : α3) satisfies (α1α2, α1α3, α2α3) 6= (0, 0, 0).
Thus, F (P4) = 0 gives a non-trivial linear relation among a4, a5, and a6.

Suppose now t ∈ C0 ∩ Q1 ∩ Q2 ∩ Q3 with Fp2-linear independent conics Q1, Q2, Q3. It

suffices to prove |Q1 ∩ Q2 ∩ Q3| ≤ 3. If |Q1 ∩ Q2| ≤ 3, then we are done. So suppose that

Q1 ∩ Q2 = {P1, P2, P3, P4}. If Q3 contains these four points, then Q3 is a linear combination

of Q1 and Q2 over some extension of Fp2 and by descent an Fp2-linear combination of Q1 and

Q2, contradiction. Thus, we have shown that |Q1 ∩Q2 ∩Q3| ≤ 3.

Definition 5.16. Let PC0 ≃ C0 × P1 be the fibre PC(O(−1) ⊕ O(1)) ×C C
0 over C0, cf.

Remark 5.8. For each S ∈ S3(Fp2), we define a morphism fS : C0 → PC0 via the map

C0 ∋ t = (t1 : t2 : t3) 7→ (t(p), (1 : ψt(S)
p)) ∈ C0 × P1. Observe from the computation in

the proof of Proposition 5.13 that ψt(S) is a polynomial function in tp
−1

1 , tp
−1

2 , tp
−1

3 , and hence

that ψt(S)
p is a polynomial function in t1, t2, t3. The image of fS defines a Cartier divisor

DS ⊆ PC0 , and we let D be the horizontal divisor

D =
∑

S∈S3(Fp2)

DS.

For t ∈ C0(k), let Dt = π−1(t) ∩D. That is, (u1 : u2) ∈ Dt if and only if u2u
−1
1 ∈ Im(ψt).

Lemma 5.17. Let t = (t1 : t2 : t3) ∈ C0(k).

(1) If t 6∈ C0(Fp6), then

{α ∈ F×
p2 : u2u

−1
1 (1− αp

3−1) ∈ Im(ψt)} =

{
F×
p2 if (u1 : u2) ∈ Dt;

F×
p otherwise.

(2) If t ∈ C0(Fp6), then

{α ∈ F×
p6 : u2u

−1
1 (1− αp

3−1) ∈ Im(ψt)} =

{
F×
p6 if (u1 : u2) ∈ Dt;

F×
p3 otherwise.

Proof. (1) First we note that F×
p ⊆ {α ∈ F×

p2 : u2u
−1
1 (1−αp

3−1) ∈ Im(ψt)}. Since Im(ψt)

is an Fp2-vector space, we have that if (u1 : u2) ∈ Dt, i.e., if u2u
−1
1 ∈ Im(ψt), then

u2u
−1
1 (1−αp3−1) ∈ Im(ψt) for any α ∈ F×

p2 . Conversely if u2u
−1
1 (1−αp3−1) ∈ Im(ψt)

for some α ∈ Fp2 \ Fp, then u2u
−1
1 ∈ Im(ψt).

(2) If t ∈ C0(Fp6), then Im(ψt) ⊆ Fp6 . Since dimF
p2
(Fp6) = 3 and d(t) ≥ 3 by Proposition

5.13, we must have that Im(ψt) = Fp6 . The proof now follows from a similar argument

as in (1).

�
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Corollary 5.18. We have

{A ∈ End(t) ∩ U3(Fp) : u2u
−1
1 (1− αp

3−1) ∈ Im(ψt)} ≃




{α ∈ Fp : α
p+1 = 1} if t /∈ C0(Fp6) and u /∈ Dt;

{α ∈ Fp2 : α
p+1 = 1} if t /∈ C0(Fp6) and u ∈ Dt;

{α ∈ Fp3 : α
p3+1 = 1} if t ∈ C0(Fp6) and u /∈ Dt;

{α ∈ Fp6 : α
p3+1 = 1} if t ∈ C0(Fp6) and u ∈ Dt.

Proof. This follows from combining Lemma 5.9 with Lemma 5.17. �

5.4. Determining [Aut((M2, 〈, 〉2)) : Aut((M, 〈, 〉))].
By Corollary 5.11, Equation (40), and the results in the previous subsection, in particular

Corollary 5.18, we immediately obtain the following result.

Lemma 5.19. Define e(p) = 0 if p = 2 and e(p) = 1 if p > 2. Then

(43) |G(M,〈,〉)| =





2e(p)p2(6−d(t)) if u /∈ Dt;

(p+ 1)p2(6−d(t)) if t /∈ C0(Fp6) and u ∈ Dt;

(p3 + 1)p6 if t ∈ C0(Fp6) and u ∈ Dt.

Recall that d(t) = 3 when t ∈ C0(Fp6). Combining Lemma 5.19 with Lemma 5.5, and using

Remark 5.6, we conclude the following.

Corollary 5.20. We have

[Aut((M2, 〈, 〉2)) : Aut((M, 〈, 〉))] = [G(M2,〈,〉2) : G(M,〈,〉)] =



2−e(p)p3+2d(t)(p+ 1)(p2 − 1)(p3 + 1) if u /∈ Dt;

p3+2d(t)(p2 − 1)(p3 + 1) if t /∈ C0(Fp6) and u ∈ Dt;

p9(p+ 1)(p2 − 1) if t ∈ C0(Fp6) and u ∈ Dt.

(44)

Now Corollary 2.5(1) and Corollary 5.20 yield the main result of this section, i.e., the mass

formula for a supersingular principally polarised abelian threefold x = (X, λ) of a-number 1,

cf. Theorem B.

Theorem 5.21. Let x = (X, λ) ∈ S3,1 such that a(X) = 1. For µ ∈ P 1(E3), consider the

associated polarised flag type quotient (Y2, µ) → (Y1, λ1) → (X, λ) which is characterised by

the pair (t, u) with t = (t1 : t2 : t3) ∈ C0(k) and u = (u1 : u2) ∈ P1(k). Let (M2, 〈, 〉2) and

(M, 〈, 〉) be the respective polarised Dieudonné modules of Y2 andX , letDt be as in Definition

5.16, and let d(t) be as in Definition 5.12. Then

Mass(Λx) = Mass(Λ3,1) · [Aut((M2, 〈, 〉2)) : Aut((M, 〈, 〉))] =

p3

210 · 34 · 5 · 7





2−e(p)p2d(t)(p2 − 1)(p4 − 1)(p6 − 1) if u /∈ Dt;

p2d(t)(p− 1)(p4 − 1)(p6 − 1) if t /∈ C0(Fp6) and u ∈ Dt;

p6(p2 − 1)(p3 − 1)(p4 − 1) if t ∈ C0(Fp6) and u ∈ Dt.

(45)

6. THE INTERSECTION C ∩∆

Let C ⊆ P2 be the Fermat curve defined by the equation Xp+1
1 + Xp+1

2 + Xp+1
3 = 0 and

∆ ⊆ P2 the curve defined in Proposition 5.13.

In the previous section we have seen the inclusion

C(Fp2)
∐

C0(Fp6)
∐

C0(Fp8)
∐

C0(Fp10) ⊆ C ∩∆

for p > 2. In this section we study the complement of this inclusion. This is an independent

section; the results will not be used elsewhere in this paper.
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6.1. Bounds for the degrees.

Let Q denote the set of all conics (including degenerate ones) Q ⊆ P2 defined over Fp2 .

Then ∆ = ∪Q∈QQ. If t ∈ C ∩ ∆, then t ∈ C ∩ Q for some Q ∈ Q and hence degF
p2
(t) :=

[Fp2(t) : Fp2] ≤ 2(p+ 1). We need the following well-known result.

Theorem 6.1 (Kummer’s Theorem). Let K be any field and n ≥ 1 an integer and a ∈ K×.

If (n, charK) = 1, and µn(K
sep) ⊆ K, and the element a (mod (K×)n) in K×/(K×)n has

order n, then [K(a1/n) : K] = n.

The authors are grateful to Ming-Lun Hsieh for providing the following proposition.

Proposition 6.2. There exist a conic Q ∈ Q and a point t ∈ C ∩ Q such that degF
p2
(t) =

(p+ 1).

Proof. Choose a generator u1 of F×
p2 such that up1 + u1 = −a 6= 0. Put u := a−1u1 and let α be

a p + 1-th root of u. As a ∈ F×
p , we have up + u = −1. Since the element u (mod (F×

p2)
p+1)

in F×
p2/(F

×
p2)

p+1 = F×
p2/(F

×
p ) has order p + 1, one has [Fp2(α) : Fp2] = p + 1 by Kummer’s

Theorem. Let

Q : X1X2 = uX2
3 and t := (α : uα−1 : 1).

One sees t ∈ C as αp+1 + (uα−1)p+1 + 1 = u + up+1 · u−1 + 1 = 0. So t ∈ C ∩ Q and

degF
p2
(t) = p + 1. �

The following result, due to Akio Tamagawa, says that the upper bound 2(p+1) for degF
p2
(t)

in C ∩∆ can be realised.

Proposition 6.3. There exist a conic Q ∈ Q and a point t ∈ C ∩ Q such that degF
p2
(t) =

2(p+ 1).

Construction. We first consider the case p = 2. Let ζ be a primitive fifth roof of unity in

F2. Since (Z/5Z)× ≃ 〈2 mod 5〉, we have F2(ζ) = F24 . One computes that (1 + ζ)3 =
1+ ζ+ ζ2+ ζ3 6= 1 and (1+ ζ)5 = 1+ ζ2+ ζ3 6= 1. Therefore 1+ ζ generates the cyclic group

F×
24 ≃ C15. Choose x, y, z ∈ F2 such that x = 1, y3 = ζ and z3 = 1+ζ , and put t := (x : y : z);

we have 1 + ζ + (1 + ζ) = 0. Since F2(z) contains F2(ζ) = F24 , we have F2(z) = F24(z).
Since 〈1 + ζ〉 = F×

24 , by Kummer’s Theorem, F2(z) = F24(z) = F212 and hence degF4
(t) =

6 = 2(p + 1). Since x, y ∈ F24 , there exist a, b, c ∈ F22 such that ax2 + bxy + cy2 = 0. Let

Q ⊂ P2 be the (degenerate) conic defined by the equation aX2
1 +bX1X2+cX

2
2 . Then the point

t ∈ C ∩Q satisfies the desired property.

Assume now that p > 2. We would like to find solutions t = (x : y : z) with x ∈ F×
p4(p+1) ,

y ∈ F×
p4 \ F×

p2 , and z ∈ F×
p2 satisfying the desired properties.

Let

f : F×
p4 → F×

p4/(F
×
p4)

2(p+1)

be the natural projection; one has F×
p4/(F

×
p4)

2(p+1) ≃ C2(p+1) as p 6= 2. Consider the following

three sets:

Z := {zp+1 : z ∈ F×
p2} ≃ F×

p ;

Y := {yp+1 : y ∈ F×
p4} \ Z;

X := {ξ ∈ F×
p4 : f(ξ) generates the cyclic group C2(p+1) }.

(46)

The sets Y and Z are equipped with an F×
p -action and we have

(47) |Z| = p− 1, |Y | = p2(p− 1), |X| = (p4 − 1) · ϕ(2(p+ 1))

2(p+ 1)
.
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Let g be the composition

g : F×
p4

N−−−→ F×
p2

proj.−−−→ F×
p2/(F

×
p )

2 ≃ C2(p+1),

where N(α) = αp
2+1 is the norm map. The map f can be identified with g by a suitable choice

of the generators. Since the image g(F×
p ) is trivial, the image f(F×

p ) is also trivial. Thus, X is

also equipped with an F×
p -action and hence −X = X .

We would like to find

(48) η + ζ = ξ

for some η ∈ Y , ζ ∈ Z and ξ ∈ −X = X .

Note that X , Y and Z are mutually disjoint: that Y ∩ Z = ∅ follows by definition, and

X∩Z = ∅ follows from the fact that F×
p ⊆ ker(f). Since f((F×

p4)
p+1) is the 2-torsion subgroup

of F×
p4/(F

×
p4)

2(p+1) ≃ C2(p+1) and f(Y ) ⊆ f((F×
p4)

p+1), the image f(Y ) contains no generator

of C2(p+1). Therefore, we also have Y ∩X = ∅.

We are working on the space P := F×
p4/F

×
p ≃ P3(Fp). The images of X, Y and Z in P are

written as X , Y and Z, respectively. So Z = {ζ̄} and

|Z| = 1, |Y | = p2, |X| = (p2 + 1) · ϕ(2(p+ 1))

2
.

For each point η̄ ∈ Y (η̄ 6= ζ̄), denote by Lη̄ ⊆ P the line joining the points η̄ and ζ̄. To solve

(48), it suffices to prove that

(49)


⋃

η̄∈Y

Lη̄


 ∩X 6= ∅.

This is because if ξ̄ ∈ Lη̄ ∩ X for some η̄ ∈ Y , then we have aη + bζ = cξ with a, b, c ∈ F×
p

and hence η′ + ζ ′ = ξ′ with η′ ∈ Y, ζ ′ ∈ Z and ξ′ ∈ X .

Lemma 6.4. For any two distinct points η̄1 and η̄2 of Y , one has Lη̄1 ∩ Lη̄2 = {ζ̄}.
Proof. Suppose thatLη̄1∩Lη̄2 ) {ζ̄}. ThenLη̄1 = Lη̄2 and η̄2 ∈ Lη̄1 . Therefore, −η2 = aη1+bζ
for a, b ∈ F×

p and hence we have

η2 + η′1 + ζ ′ = 0

for some η′1 ∈ Y and ζ ′ ∈ Z. Now write

η2 = (y2)
p+1, η′1 = (y′1)

p+1, ζ ′ = (z′)p+1,

with y2, y
′
1 ∈ F×

p4 \ F×
p2 and z′ ∈ F×

p2 . That is, we get a point (y2 : y′1 : z′) ∈ C(Fp4). Since

C(Fp4) = C(Fp2) by Lemma 3.3, we have y2, y
′
1 ∈ Fp2 , contradiction. �

By Lemma 6.4, ⋃

η̄∈Y

Lη̄ = {ζ̄} ∐
∐

η̄∈Y

Lη̄ − {ζ̄},

and hence

|
⋃

η̄∈Y

Lη̄| = 1 + |Y | · p = p3 + 1, and |P−
⋃

η̄∈Y

Lη̄| = p2 + p.

To show (48), we check the inequality

(50) |X| = (p2 + 1) · ϕ(2(p+ 1))

2
> p2 + p
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for all p 6= 2. If p = 3, then |X| = 20 > 12 holds. For p ≥ 5, by the inequality ϕ(n) ≥
√
n/2,

it suffices to show

(p2 + 1) ·
√
p+ 1

2
> p2 + p.

This follows from

(p2 + 1)2(p+ 1)− 4(p2 + p)2 = (p+ 1)(p4 − 4p3 − 2p2 + 1) > 0

for p ≥ 5. Therefore, the inequality (50) holds and we have found η, ζ, ξ as in (48).

Now write

ζ = zp+1 ( for z ∈ F×
p2), η = yp+1 ( for y ∈ F×

p4 \ F×
p2).

Choose an element x ∈ Fp such that xp+1 = −ξ ∈ F×
p4 . Since the element ξ (mod (F×

p4)
p+1) is

a generator in F×
p4/(F

×
p4)

p+1, by Kummer’s Theorem we have

(51) [Fp4(x) : Fp4] = p+ 1.

We claim that ξ 6∈ F×
p2 . Suppose for contradiction that ξ ∈ F×

p2 . Then

f(ξ) = g(ξ) ∈ g(F×
p2) = (F×

p2)
2/(F×

p )
2 ( F×

p2/(F
×
p )

2 ≃ C2(p+1).

Therefore, f(ξ) cannot be a generator of C2(p+1), contradiction. So since ξ ∈ F×
p4 \ F×

p2 , we

have Fp2(x) ⊃ Fp2(ξ) = Fp4 . This shows that

Fp2(x) = Fp4(x), and [Fp2(x) : Fp2] = 2(p+ 1)

by (51). Put t := (x : y : z) = (x/z : y/z : 1) ∈ C(Fp). Then we get

(52) [Fp2(t) : Fp2] = 2(p+ 1).

Since y/z ∈ F×
p4 \ F×

p2 , there exist b, c ∈ Fp2 such that

(y
z

)2

+ b
(y
z

)
+ c = 0, or y2 + byz + cz2 = 0.

Let Q ∈ Q be the (degenerate) conic defined by the equation X2
2 + bX2X3 + cX2

3 = 0. Then

t ∈ C ∩Q and degF
p2
(t) = 2(p+ 1). This completes the construction. �

6.2. Estimate of |C ∩∆|.
In this subsection, points in C will mean geometric points and C ∩ ∆ will mean the set-

theoretic intersection. Define

Z := {(t, Q) ∈ C × Q : t ∈ Q}
and consider the following natural maps:

Z

C Q

π

q

The degree of the map q is 2(p+ 1). For each Q ∈ Q, the fibre over Q has size

2(p+ 1)− εQ,

where εQ =
∑

r≥2 εQ,r with

εQ,r = #{t ∈ C ∩Q : multC∩∆(t) = r} · (r − 1).
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Thus, |Z | = 2(p+ 1)(p10 + p8 + p6 + p4 + p2 + 1)− ε, where

(53) ε :=
∑

Q∈Q

εQ

is the error term coming from intersection multiplicities.

Proposition 6.5. We have |C ∩∆| = p11 + o(p11)− ε as p→ ∞, where ε is defined in (53).

Remark 6.6. We expect that ε = o(p11). Then we would have |C ∩ ∆| = p11 + o(p11) as

p→ ∞.

Proof. For any integer i ≥ 1, define

Ci := {t ∈ C(Fp) : degF
p2
(t) = i}.

By Lemma 3.3, we have

|C1| = |C(Fp2)| = p3 + 1, |C3| = |C0(Fp6)| = p6 + p5 − p4 − p3,

|C4| = |C0(Fp8)| = p8 − p6 + p5 − p3, |C5| = |C0(Fp10)| = p10 + p7 − p6 − p3.

For each point t = (t1 : t2 : t3) ∈ C, the fibre π−1(t) is the set (Wt − {0}) /F×
p2 , where

Wt := {F ∈ Fp2[X1, X2, X3]2 : F (t) = 0}
and where Fp2[X1, X2, X3]2 denotes the subspace of homogeneous polynomials of degree two.

They fit into the following exact sequence

0 −−−→ Wt −−−→ Fp2 [X1, X2, X3]2
evt−−−→ Fp2〈t21, t22, t23, t1t2, t1t3, t2t3〉 −−−→ 0.

It follows that dim(Wt) = 6 − d(t) and π−1(t) ≃ P5−d(t)(Fp2), where we redefine d(t) as the

dimension of Fp2〈t21, t22, t23, t1t2, t1t3, t2t3〉 – even for p = 2. Therefore, the numbers of fibres

over Ci for i = 1, 3, 4, 5 are

(p8 + p6 + p4 + p2 + 1), (p4 + p2 + 1), (p2 + 1), 1,

respectively. Then the number of points in Z over the union of Ci for i = 1, 3, 4, 5 is given by

A := (p3 + 1)(p8 + p6 + p4 + p2 + 1) + (p6 + p5 − p4 − p3)(p4 + p2 + 1)

+ (p8 − p6 + p5 − p3)(p2 + 1) + (p10 + p7 − p6 − p3)

= p11 + 3p10 + 2p9 + p8 + 3p7 − p6 + p5 − 2p3 + p2 + 1.

Thus,

B := #{(t, Q) ∈ Z : degF
p2
(t) > 5} = |Z | − A

= p11 − p10 + p8 − p7 + 3p6 + p5 + 2p4 + 4p3 + p2 + 2p+ 1− ε.

Finally,

|C ∩∆| = |Im(π)| = |C1|+ |C3|+ |C4|+ |C5|+B

= p11 + 2p8 + 2p6 + 3p5 + p4 + 2p3 + p2 + 2p+ 2− ε.
(54)

�

7. THE AUTOMORPHISM GROUPS

In this section we discuss the automorphism groups of principally polarised abelian three-

folds (X, λ) over an algebraically closed field k ⊇ Fp with a(X) = 1. We shall first focus

on an open dense locus in Pµ(a = 1) (the a-number one locus in Pµ) in Subsection 7.2 and

then discuss a few other cases in Subsections 7.3 and 7.4. To get started, we record some

preliminaries in the next subsection.
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7.1. Arithmetic properties of definite quaternion algebras over Q.

Let Cn denote the cyclic group of order n ≥ 1. Let Bp,∞ denote the definite quaternion

Q-algebra ramified exactly at {∞, p}. The class number h(Bp,∞) of Bp,∞ was determined by

Deuring, Eichler and Igusa (cf. [9]) as follows:

(55) h(Bp,∞) =
p− 1

12
+

1

3

(
1−

(−3

p

))
+

1

4

(
1−

(−4

p

))
,

where (·/p) is the Legendre symbol. If h(Bp,∞) = 1, then the type number of Bp,∞ is one and

hence all maximal orders are conjugate. It follows from (55) that

(56) h(Bp,∞) = 1 ⇐⇒ p ∈ {2, 3, 5, 7, 13}.

If p = 2, the quaternion algebra B2,∞ ≃
(

−1,−1
Q

)
is generated by i, j with relations i2 = j2 =

−1 and k := ij = −ji, and the Z-lattice

(57) O2,∞ := SpanZ

{
1, i, j,

1 + i+ j + k

2

}

is a maximal order of B2,∞. Moreover,

(58) O×
2,∞ =

{
±1,±i,±j,±k, ±1 ± i± j ± k

2

}
=: E24,

and one has E24 ≃ SL2(F3) and E24/{±1} ≃ A4.

If p = 3, the quaternion algebra B3,∞ ≃
(

−1,−3
Q

)
is generated by i, j with relations i2 =

−1, j2 = −3 and k := ij = −ji, and the Z-lattice

(59) O3,∞ := SpanZ

{
1, i,

1 + j

2
,
1 + i+ j + k

2

}

is a maximal order of B2,∞. Moreover,

(60) O×
3,∞ = 〈i, ζ6〉 =: T12, ζ6 = (1 + j)/2,

and one has T12 ≃ C4 ⋊ C3 and T12/{±1} ≃ D3, the dihedral group of order six.

If p ≥ 5, then O× ∈ {C2, C4, C6} for any maximal order O in Bp,∞ [17, V Proposition 3.1,

p. 145]. Fix O a maximal order in Bp,∞ and let h(O,C2n) the number of right O-ideal classes

[I] with Oℓ(I)
× ≃ C2n, where Oℓ(I) is the left order of I . Then (see [9])

(61) h(O,C4) =
1

2

(
1−

(−4

p

))
and h(O,C6) =

1

2

(
1−

(−3

p

))
.

Lemma 7.1.

(1) Let Q be a definite quaternion Q-algebra and O a Z-order stable under the canonical

involution ∗, and let n ≥ 1 be a positive integer. Then the integral quaternion hermitian

group U(n,O) = {A ∈ Matn(O) : A ·A∗ = In} is equal to the permutation unit group

diag(O×, . . . , O×) · Sn.

(2) Let O be a maximal order in B2,∞. Let m2 : U(n,O) → GLn(O) → GLn(O/2O) be

the reduction-modulo-2 map. Then ker(m2) = diag({±1}, . . . , {±1}) ≃ Cn
2 .

Proof. (1) Let A = (aij) ∈ U(n,O). Then since AA∗ = In, we have
∑

k aika
∗
ik = 1 for

any 1 ≤ i ≤ n. Since ajka
∗
jk = 0 or 1, for any 1 ≤ i 6= n, there is only one integer

1 ≤ k ≤ n such that aik 6= 0 and aik ∈ O×. On the other hand, since A∗A = In,

for any 1 ≤ k ≤ n, there is a only one integer 1 ≤ i ≤ n such that aik 6= 0 and

aik ∈ O×. Thus, A ∈ diag(O×, . . . , O×) · Sn. Checking the reverse containment

diag(O×, . . . , O×) · Sn ⊆ U(n,O) is straightforward.
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(2) By (56), we may assume that O = O2,∞. Since the diagonal entries of elements in

ker(m2) are all not zero, by part (1) we find ker(m2) ⊆ diag(O×, . . . , O×). Therefore,

it suffices to show that the kernel of the reduction-modulo-2 mapm2 : O
× → (O/2O)×

is isomorphic to C2. Using (58) and 2O = {a1 + a2i+ a3j + a4k : ai ∈ Z, a1 ≡ a2 ≡
a3 ≡ a4 (mod 2)}, one checks that indeed ker(m2) = {±1} ⊆ O×.

�

Lemma 7.2. Let Dp be the quaternion division Qp-algebra and Op its maximal order. Let Π
be a uniformiser of Op, and put Vp := 1 + ΠMatn(Op) ⊆ GLn(Op). If p ≥ 5, then the torsion

subgroup (Vp)tors of Vp is trivial.

Proof. Let α ∈ (Vp)tors; we must show that α = 1. Since Vp is a pro-p group, we have αp
r

= 1
for some r ≥ 1. By induction, we may assume that αp = 1. Put A := Zp[α] ⊆ Matn(Op) and

K := Qp[α] ⊆ Matn(Dp). Then K ≃ Qp,Qp(ζp) or Qp × Qp(ζp), where ζp is a primitive pth

root of unity. Then K ≃ Qp if and only if ord(α) = 1.

Suppose first that K ≃ Qp(ζp). Write α − 1 = Πβ for some (0 6=)β ∈ Matn(Op).
The reduced characteristic polynomial of α is det(t · I2n − ι(α)) = Φp(t)

2n/(p−1), where

ι : Matn(Op) →֒ Mat2n(Qp) is an algebra embedding and Φp is the pth cyclotomic poly-

nomial. Putting t = 1, one obtains Nr(1 − α) = Φp(1)
2n/(p−1) = p2n/(p−1), where Nr is the

reduced norm from Mat(Dp) to Qp. Taking the p-adic valuation vp of the above equation, we

obtain
2n

p− 1
= n + vp(Nr(β)) ≥ n,

which is impossible because p ≥ 5.

Suppose now that K = Qp × Qp(ζp) and write α = (1, α2), where α2 ∈ Qp(ζp). Since

K ⊆ Matn(Dp) = EndDp
(Dn

p ), the faithful action of K on Dn
p gives a decomposition Dn

p =
V1 ⊕ V2, where V1 ≃ Dn1

p , V2 ≃ Dn2
p , and n1, n2 ≥ 1 with n1 + n2 = n. Now we regard α2 as

an element in EndDp
(V2) and write α2 − 1 = Πβ2 for an element β2 which is integral over Zp.

By the same argument as in part (1), we obtain

2n2

p− 1
= n2 + vp(Nr(β2)) ≥ n2,

which is again impossible. �

7.2. The region outside the divisorD.

Recall from Subsection 3.1 that E is a supersingular elliptic curve over Fp2 such that πE =
−p. Let µcan ∈ P (E3) be the threefold self-product of the canonical principal polarisation on

E; this is also called the canonical polarisation on E3.

Theorem 7.3. Let x = (X, λ) ∈ S3,1(k) with a(X) = 1. For µ ∈ P (E3), consider the

associated polarised flag type quotient (Y2, pµ) → (Y1, λ1) → (X, λ) which is characterised

by the pair (t, u) with t = (t1 : t2 : t3) ∈ C0(k) and u = (u1 : u2) ∈ P1(k). Let (M2, 〈, 〉2) and

(M, 〈, 〉) be the respective polarised Dieudonné modules of (Y2, µ) and (X, λ), let Dt be as in

Definition 5.16 and let d(t) be as in Definition 5.12. Assume that (t, u) 6∈ D, that is, u 6∈ Dt.

(1) If p = 2, then Aut(X, λ) ≃ C3
2 .

(2) If p ≥ 5, or p = 3 and d(t) = 6, then Aut(X, λ) ≃ C2.

Proof. By Proposition 3.12, (Y2, pµ) → (X, λ) is the minimal isogeny. Therefore,

(62) Aut(X, λ) = {h ∈ Aut(Y2, µ) : mp(h) ∈ G(M,〈 ,〉)}.
By Proposition 5.10, we have an exact sequence

(63) 1 → ker(ψt) −→ G(M,〈,〉)
mΠ−−→ G(M,〈,〉) → 1.
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(1) As p = 2, we have |Λ3,1| = 1 by Hashimoto’s result [4]. Thus, we may assume that

(Y2, µ) = (E3, µcan), and we have Aut(Y2, µ) = diag(O×, O×, O×) ·S3 by Lemma 7.1

with O = End(E). As u 6∈ Dt, Corollary 5.18 yields G(M,〈 ,〉) = {±1} = 1. We

see from the proof of Proposition 5.13 that ker(ψt) is the Fp2-subspace generated by

I12 + I21, I13 + I31 and I23 + I32 (in the notation of that proof). Therefore,

(64) G(M,〈 ,〉) =

{(
I3 0
S I3

)
: S = (sij) ∈ S3(Fp2), sii = 0 ∀1 ≤ i ≤ 3

}
.

Let h ∈ Aut(X, λ) ⊆ diag(O×, O×, O×) · S3. Since m2(h) has non-zero diagonal

entries, h ∈ diag(O×, O×, O×). One deduces m2(h) = 1 from (64). Thus, h ∈
ker(m2) = C3

2 , by Lemma 7.1. On the other hand, ker(m2) ⊆ Aut(X, λ) from (62).

This proves (1).

(2) Assume p ≥ 5. As u 6∈ Dt, Corollary 5.18 implies that G(M,〈 ,〉) = {±1}. Lemma 7.2

implies that the map mΠ : Aut(X, λ) → G(M,〈 ,〉) is injective, because ker(mΠ) is

contained in (Vp)tors. Thus, Aut(X, λ) ≃ C2. Now assume p = 3 and d(t) = 6. In this

case G(M,〈 ,〉) = {±1} follows from (63) and Corollary 5.18. By a lemma of Serre [13,

p. 207], the map m3 : Aut(X, λ) → G(M,〈 ,〉) is injective and hence Aut(X, λ) ≃ C2.

�

Corollary 7.4. Let the notation and assumptions be as in Theorem 7.3.

(1) If p = 2, then |Λx| = 4.

(2) If p = 3 and d(t) = 6, then |Λx| = 311 · 13.

(3) If p ≥ 5, then

(65) |Λx| =
p3+2d(t)(p2 − 1)(p4 − 1)(p6 − 1)

210 · 34 · 5 · 7 .

Proof. All statements follow from Theorems 5.21 and 7.3. For p = 2,

(66) |Λx| =
23 · 29 · 3 · (3 · 5) · (32 · 7)

210 · 34 · 5 · 7 = 4.

For p = 3,

(67) |Λx| =
33+2d(t) · 23 · (24 · 5) · (23 · 7 · 13)

210 · 34 · 5 · 7 = 32d(t)−1 · 13 = 311 · 13,

and we obtain (65) for p ≥ 5. �

A g-dimensional principally polarised supersingular abelian variety (X, λ) over k is said to

be generic if the moduli point Spec k → Sg,1 factors through a generic point of Sg,1. Recall

that the supersingular locus Sg,1 ⊆ Ag,1 ⊗ Fp is a scheme of finite type over Fp which is

defined over Fp. Moreover, every geometrically irreducible component of Sg,1 is defined over

Fp2 , cf. [24, Section 2.2].

Oort’s conjecture [1, Problem 4] asserts that for any integer g ≥ 2 and any prime number p,

every generic g-dimensional principally polarised supersingular abelian variety (X, λ) over k of

characteristic p has automorphism group {±1}. Oort’s conjecture fails with counterexamples

in (g, p) = (2, 2) or (g, p) = (3, 2); see [7, 15].

For fixed g ≥ 2 and prime number p, consider the refined Oort conjecture:

(O)g,p: Every generic g-dimensional principally polarised supersingular abelian variety (X, λ)
over k of characteristic p has automorphism group {±1}.
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Corollary 7.5. Let (X, λ) be a generic principally polarised supersingular abelian threefold

over k of characteristic p > 0. Then

Aut(X, λ) ≃
{
C3

2 for p = 2;

C2 for p ≥ 3.

Proof. This follows immediately from Theorem 7.3. �

In other words, Oort’s Conjecture (O)3,p holds precisely when p 6= 2.

Remark 7.6. (1) It is shown [15, Theorem 5.6, p. 270] that if (X, λ) is a principally po-

larised supersingular abelian threefold over k of characteristic 2, then Aut(X, λ) ⊇ C3
2 .

By Corollary 7.5, the smallest groupC3
2 also appears as Aut(X, λ) for some (X, λ). We

have seen that the unique member (E3, µcan) in Λ3,1 has automorphism group E3
24⋊S3

(of order 210 · 34). We expect that 210 · 34 is the maximal order of automorphism groups

of all principally polarised abelian threefolds over k of any characteristic (including

zero).

(2) According to Hashimoto’s result [4], we have |Λ3,1| = 2 for p = 3. In this case, we have

two isomorphism classes, represented by (E3, µcan) and (E3, µ). Using Lemma 7.1, we

compute |Aut(E3, µcan)| = 27 · 34 and conclude |Aut(E3, µ)| = 27 · 34 from the mass

formula Mass(Λ3,1) = 1/(26 · 34).
7.3. The region where t 6∈ C(Fp6) and (t, u) ∈ D.

In this subsection we consider the region (t, u) ∈ D and assume that t 6∈ C(Fp6). This

extends the region considered in Subsection 7.2.

Lemma 7.7. Let (X, λ) ∈ S3,1(k) with a(X) = 1. If p ≥ 3 and Aut(X, λ) ⊆ Cp+1, then

Aut(X, λ) ⊆ {C2, C4, C6}.

Proof. Suppose that Aut(X, λ) = C2d with 2d|(p + 1). Then we have a ring homomorphism

Z[C2d] → End(X) which maps C2d bijectively to Aut(X, λ). The Q-algebra homomorphism

Q[C2d] =
∏

d′|2d

Q[ζd′ ] → End0(X) = Mat3(Bp,∞)

factors through an injective Q-algebra homomorphism

r∏

i=1

Q[ζdi ] →֒ End0(X) = Mat3(Bp,∞),

where {di|2d} ⊆ {d′|2d}. Since the composition gives an embedding C2d →֒ Aut(X), the

integers {di} satisfy lcm(d1, . . . , dr) = 2d. Since p ∤ 2d, the algebra Zp[C2d] is étale over

Zp and is the maximal order in Qp[C2d]. This gives rise to an embedding
∏r

i=1 Z[ζdi ]⊗ Zp →֒
End(X)⊗Zp ≃ End(X [p∞]). Thus, the decompositionX [p∞] = H1×· · ·×Hr into a product

of supersingular p-divisible groups shows a(X) ≥ r and hence r = 1. Therefore, there is a

Q-algebra embedding of Q(ζ2d) into Mat3(Bp,∞). This implies that ϕ(2d)|6 (where ϕ denotes

Euler’s totien function) and hence 2d ∈ {2, 4, 6, 14, 18}.

If 2d = 14, then p ≡ −1 (mod 7) and ord(p) = 2 in (Z/7Z)×. This gives rise to an embed-

ding Z[ζ14]⊗ Zp = Zp2 × Zp2 × Zp2 →֒ End(X [p∞]) and hence a(X) = 3, a contradiction. If

2d = 18, then p ≡ −1 (mod 9) and ord(p) = 2 in (Z/9Z)×. Similarly, we get an embedding

Z[ζ18]⊗ Zp = Zp2 × Zp2 × Zp2 →֒ End(X [p∞]) and a(X) = 3, again a contradiction. �

Recall that F1
p2 := {α ∈ F×

p2 : αp+1 = 1} ≃ Cp+1 denotes the group of norm one elements

in F×
p2 .
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Theorem 7.8. Let the notation be as in Theorem 7.3. Assume that (t, u) ∈ D and t 6∈ C(Fp6).

(1) If p = 2, then Aut(X, λ) ≃ C3
2 × C3.

(2) If p = 3 and d(t) = 6, then Aut(X, λ) ∈ {C2, C4}.

(3) For p ≥ 5, we have the following cases:

(i) If p ≡ −1 (mod 4), then Aut(X, λ) ∈ {C2, C4}.

(ii) If p ≡ −1 (mod 3), then Aut(X, λ) ∈ {C2, C6}.

(iii) If p ≡ 1 (mod 12), then Aut(X, λ) ≃ C2.

Proof. (1) By Hashimoto’s result [4], we may assume that (Y2, µ) = (E3, µcan), and by

Lemma 7.1 we have Aut(Y2, µ) = diag(O×, O×, O×) · S3. Then

Aut(X, λ) =



h ∈ Aut(Y2, µ) : m2(h) =



a

a
a


 , a ∈ F1

4





=



h ∈ diag(O×, O×, O×) : m2(h) =



a

a
a


 , a ∈ F1

4





=







±wj

±wj
±wj


 : 0 ≤ j ≤ 5



 ≃ C3

2 × C3,

where w = (1 + i+ j + k)/2 satisfies w6 = 1.

(2) In this case, G(M,〈 ,〉) = F1
9 ≃ C4 by Corollary 5.18. The proof then follows from the

fact that the reduction-modulo-3 map is injective.

(3) In this case, G(M,〈 ,〉) = F1
p2 ≃ Cp+1 by Corollary 5.18. It follows from Lemma 7.2

that Aut(X, λ) can be identified with a subgroup of G(M,〈 ,〉) ≃ Cp+1 as p ≥ 5. By

Lemma 7.7, Aut(X, λ) ∈ {C2, C4, C6}. The assertions for (i), (ii) and (iii) follow from

this assertion.

�

Write Dµ for D ⊆ Pµ(a = 1) to emphasise its dependence on µ ∈ P (E3). Recall that Ψµ :
Pµ → S3,1 is the map (Y•, ρ•) 7→ (Y0, λ0). Put Dµ,C(F

p6 )
c := {(t, u) ∈ Dµ : t 6∈ C(Fp6)}.

Let Λ1 denote the set of Fp2-isomorphism classes of supersingular elliptic curves E ′ over Fp2
with Frobenius endomorphism πE′ = −p. This set is in bijection with the set Cl(Bp,∞) of right

O-ideal classes for a fixed maximal order O in Bp,∞, cf. [18, Theorem 2.1] and [23, Theorem

2.2].

Proposition 7.9.

(1) If p = 3 and d(t) = 6, then for all (X, λ) ∈ Ψµ(Dµ,C(F
p6 )

c) with µ = µcan, one has

Aut(X, λ) ≃ C4.

(2) If p ≥ 5 and p ≡ 3 (mod 4), then there exists µ ∈ P (E3) such that for all (X, λ) ∈
Ψµ(Dµ,C(F

p6)
c) one has Aut(X, λ) ≃ C4.

(3) If p ≥ 5 and p ≡ 2 (mod 3), then there exists µ ∈ P (E3) such that for all (X, λ) ∈
Ψµ(Dµ,C(F

p6)
c) one has Aut(X, λ) ≃ C6.

(4) If p ≥ 11, then there exists µ ∈ P (E3) such that for all (X, λ) ∈ Ψµ(Dµ,C(F
p6)

c) one

has Aut(X, λ) ≃ C2.

Proof. We use the results from Subsection 7.1. If p = 3, then O× = Aut(E) = 〈i, ζ6〉. If

p ≥ 5 and p ≡ 2 (mod 3) (resp. p ≡ 3 (mod 4)), there exists a unique supersingular elliptic

curve E ′ in Λ1 such that O× := Aut(E ′) ≃ C6 (resp. C4). If p ≥ 11, then there exists a
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supersingular elliptic curve E ′ in Λ1 such that O× := Aut(E ′) ≃ C2. Note that if p ≥ 11 then

either h(Bp,∞) ≥ 2 or p ≡ 1 (mod 12). For cases (2), (3), and (4) we choose a polarisation

µ ∈ P (E3) such that (E3, µ) ≃ (E ′3, µ′
can), where µ′

can is the canonical polarisation on E ′3

as before. (In case (1) µ = µcan is the unique choice of polarisation.) Then using the same

argument as in Theorem 7.8, the automorphism group Aut(X, λ) for (X, λ) ∈ Ψµ(Dµ,C(F
p6 )

c)

consists of elements of the form diag(a, a, a) with a ∈ O× satisfying m3(a) ∈ F1
4 if p = 3

(resp. mΠ(a) ∈ F1
p2 if p ≥ 5). If p = 3, we have m3(〈i〉) = C4. If p ≡ 3 (mod 4), we have

mΠ(〈i〉) = C4. If p ≡ 2 (mod 3), we have mΠ(〈ζ6〉) = C6. Thus, Aut(X, λ) ≃ C4 for p ≡ 3
(mod 4) and Aut(X, λ) ≃ C6 for p ≡ 2 (mod 3). In case (4), we have Aut(X, λ) ≃ C2. �

Remark 7.10. (1) Given Proposition 7.9, it remains to check whether the groupC2 also ap-

pears as Aut(X, λ) in the regionΨµ(Dµ,C(F
p6 )

c) for some µ ∈ P (E3) when p = 3, 5, 7.

(2) We assume the condition d(t) = 6 when p = 3 in Theorems 7.3 and 7.8. It remains to

determine which other automorphism groups occur if this condition is dropped.

7.4. The superspecial case.

As we have seen in the previous subsection, to investigate the automorphism groups in some

special region of Pµ(a = 1), the knowledge of automorphism groups arising from the super-

special locus Λ3,1 also plays an important role. In this subsection, we discuss only preliminary

results on the automorphism groups of members in Λ3,1. A complete list of all possible auto-

morphism groups requires much more work; see Question (2) below.

We briefly recall some results. For p = 2, we have |Λ3,1| = 1 and the unique isomorphism

class represented by (X, λ) has automorphism group E3
24 ⋊ S3. For p = 3, we have |Λ3,1| = 2

by Hashimoto’s result. In this case, the two isomorphism classes are represented by (E3, µcan)
and (E3, µ), respectively, and we have Aut(E3, µcan) = T 3

12 ⋊ S3 so |Aut(E3, µ)| = 27 · 34,
cf. Remark 7.6. For p ≥ 5, the following non-abelian groups occur:




C3
2 ⋊ S3 for p ≡ 1 (mod 12);

C3
4 ⋊ S3 for p ≡ 3 (mod 4);

C3
6 ⋊ S3 for p ≡ 2 (mod 6),

cf. Lemma 7.1.

Unlike the a-number one case, it is more difficult to construct a member (X, λ) in Λ3,1 such

that Aut(X, λ) ≃ C2. However, it is expected that when p goes to infinity, most members of

Λg,1 have automorphism group C2. The following result confirms this expectation for g = 3,

based on Hashimoto’s result [4].

Proposition 7.11. Let Λ3,1(C2) := {(X, λ) ∈ Λ3,1 : Aut(X, λ) ≃ C2}. Then

(68)
|Λ3,1(C2)|
|Λ3,1|

→ 1 as p→ ∞.

Proof. Put h2(p) := |Λ3,1(C2)|. By [4, Main Theorem], the main term of h(p) := |Λ3,1| is

H1(p) := (p− 1)(p2+1)(p3− 1)/(29 · 34 · 5 · 7) and the error term ε(p) is O(p5). Observe that

Mass(Λ3,1) = H1(p)/2. If (X, λ) 6∈ Λ3,1(C2), then |Aut(X, λ)| ≥ 4. This gives the inequality

Mass(Λ3,1) ≤
h2(p)

2
+
h(p)− h2(p)

4
=
h2(p)

4
+
H1(p) + ε(p)

4
.

From Mass(Λ3,1) = H1(p)/2 one deduces that h2(p) ≥ H1(p)− ε(p). Since

H1(p)− ε(p)

H1(p) + ε(p)
≤ |Λ3,1(C2)|

|Λ3,1|
≤ 1 and

H1(p)− ε(p)

H1(p) + ε(p)
→ 1 as p→ ∞,

we get the assertion (68). �
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We end the paper with some open problems.

Questions. (1) Let X be a principally polarisable supersingular abelian variety over k, and

let P (X) be the set of isomorphism classes of principally polarisations on X . The mass

of P (X) is defined as

(69) Mass(P (X)) :=
∑

λ∈P (X)

1

|Aut(X, λ)| .

One would like to find a mass formula for Mass(P (X)) and understand the relation-

ship between the sets P (X) and Λ(X,λ) for a polarisation λ ∈ P (X) when dim(X) =
3 . Ibukiyama [7] studied P (X) for dim(X) = 2. He gave a mass formula for

Mass(P (X)) and also showed that P (X) is in bijection with the set Λ(X,λ) for any

principal polarisation λ on X . Note that not every supersingular abelian threefold is

principally polarisable: by [12, Theorem 10.5, p. 71] we see that the supersingular lo-

cus S3,d ⊆ A3,d ⊗ Fp is three-dimensional if d is divisible by a high power of p, while

dim(S3,1) = 2.

(2) In order to study the automorphism groups of (X, λ) with a(X) = 2, we also need to

study the automorphism groups arising from the non-principal genus Λ3,p; see Proposi-

tion 3.12. Do we have an asymptotic result similar to Proposition 7.11 for Λ3,p? What

are the possible automorphism groups arising from Λ3,1 or from Λ3,p? We refer to

Ibukiyama-Katsura-Oort [8], Katsura-Oort [10] and Ibukiyama [6] for detailed investi-

gations for the principal genus case Λ2,1 and the non-principal genus case Λ2,p. Observe

that there are natural maps Λ2,1 × Λ1,1 → Λ3,1 and Λ2,p × Λ1,1 → Λ3,p. Following the

references mentioned above, these maps already produce many automorphism groups

of members of Λ3,1 and Λ3,p.

(3) We say two polarised abelian varieties (X1, λ1) and (X2, λ2) are isogenous, denoted

(X1, λ1) ∼ (X2, λ2), if there exists a quasi-isogeny ϕ : X1 → X2 such that ϕ∗λ2 = λ1.

Let x = (X0, λ0) ∈ Ag,1(k) be a geometric point. Define

(70) Λx := {(X, λ) ∈ Ag,1(k) : (X, λ) ∼ (X0, λ0) and (X, λ)[p∞] ≃ (X0, λ0)[p
∞]}.

Using the foliation structure on Newton strata due to Oort [16], one can show that the set

Λx is finite. Note that any two principally polarised supersingular abelian varieties over

k are isogenous, cf. [19, Corollary 10.3]. Thus, the definition of Λx in (70) coincides

that of Λx in (3) when x ∈ Sg,1. That is, a mass function

(71) Mass : Ag,1(k) → Q, x 7→ Mass(Λx)

would extend the mass function Mass(x) := Mass(Λx) defined on Sg,1(k) as before.

One would like to compute or study the properties of such a mass function on Ag,1(k),
starting in low genus g. This problem may require developing more explicit descriptions

of the foliation structure on Newton strata.
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