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1. Measures associated to successive maxima.
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Let E = (E , (|| · ||v )v ) be an adelic vector bundle of
rank r = rank(E) over Q.
For every place v of Q the vector space E ⊗ Cv is
thus equipped with a norm ||s||v .
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The successive maxima (λi)
r
i=1 = (λi(E))r

i=1 of E are
defined as follows. The real number λi(E) is the
largest real number λ such that the set of elements
s ∈ E satisfying

λ(s) := −
∑

v

log ||s||v ≥ λ,

generates a Q-vector space of dimension at least i .
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Let now X be a projective variety of dimension d over
Q, and let L be an ample line bundle on X , endowed
with a continuous adelic metric (| · |L,v )v , in the sense
of Zhang. In particular, we assume that for all but a
finite number of places, the metrics (| · |L,v )v come
from a single integral model of (X ,L) over Z.
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The Q-vector space H0(X ,L⊗n) is then an adelic
vector bundle, in the sense above, if equipped with
the family of norms

||s||L⊗n,v = sup
x∈X (Cv )

|s(x)|L⊗n,v .

Let rn be the dimension of H0(X ,L⊗n) and
λi ,n, i = 1 · · · rn, the successive maxima of H0(X ,L⊗n).
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Theorem 1(Chen)
The sequence of probability measures

νn =
1
rn

rn∑
i=1

δ 1
nλi,n

converges weakly to a probability measure ν with
compact supports.
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2. Modular forms and Petersson norms.
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We first recall some work of Bost and Kuhn
concerning the interpretation of holomorphic modular
forms of weight 12k for SL2(Z) as sections of the k th

power for k ≥ 1 of a particular metrized line bundle on
P1
Z.
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Let H be the upper half plane and let Γ = PSL(2,Z)
be the modular group. Then X = Γ\(H ∪ P1(Q)) has a
natural structure as a Riemann surface. The classical
j function of z ∈ H has expansion

j(z) =
1
q

+ 744 +
∞∑

n=1

anqn in q = e2πiz .

The map z → j(z) defines an isomorphism X → P1
C.
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The volume form of the hyperbolic metric on H is

µ =
dx ∧ dy

y2 =
i
2

dz ∧ dz
Im(z)2 .

This form has singularities at the cusp and at the
elliptic fixed points of Γ.
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Define

∆(z) = q
∞∏

n=1

(1− qn)24 = q +
∑
n>1

bnqn

to be the normalized cusp form of weight 12 for Γ. Let
Si∞ be the unique cusp of X .
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Suppose k is a positive integer. We define the line
bundle

M12k(Γ)∞ = OX (Si∞)⊗k

to be the line bundle of modular forms of weight 12k
with respect to Γ. This is shown to be compatible with
the usual classical definition of modular forms.
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In particular, there is an isomorphism

M12k(Γ)→ H0(X ,OX (Si∞)⊗k)

between the space M12k(Γ) of classical modular forms
f = f (z) of weight 12k and H0(X ,OX (Si∞)⊗k), which
sends f to the element f

∆k in the function field
C(X ) = C(j).
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The Petersson metric | |∞ onM12k(Γ)∞ is defined by

|f |2∞(z) = |f (z)|2(4π Im(z))12k

if f is a meromorphic section ofM12k(Γ)∞.
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It can be shown that this metric is logarithmically
singular with respect to the cusp and the elliptic fixed
points of X .
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Following Kuhn, we define an integral model of X to
be

X = Proj(Z[Z0,Z1])

with Z0 and Z1 corresponding to the global sections
j ·∆ and ∆ of the ample line bundleM12(Γ)∞.
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The point Si∞ defines a section S i∞ of X = P1
Z → Z.

We extendM12k(Γ)∞ to the line bundle

M12k(Γ) = OX (S i∞)⊗k

on X .
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The model X then gives natural metrics | |v at all
non-archimedean places v for the induced line bundle
M12k(Γ)Q on the general fiber XQ = Q⊗Z XZ. When v
is the infinite place of Q, we let | |v be the Petersson
metric | |∞.
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Theorem 2

Let {λi ,12k}k
i=1 be the successive maxima associated

to S2k(Γ) with respect to the L2 Hermitian norm
defined by the Petersson metric.

i. The sequence of probability measures

ν12k =
1
k

k∑
i=1

δ 1
k λi,12k

converges weakly as k →∞ to a probability
measure ν.

ii. The support of the measure ν is bounded above
by 2π + 6(1− log(12)) = −2.62625.... The support
of ν is not bounded below.
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Furthermore, as k →∞, the proportion of successive
maxima which are produced by normalized Hecke
eigen cusp forms in S12k(Γ) goes to 0.
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