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Let α ∈ Q
×

.

Its Weil height is

hWeil(α) ∶= ∑
v∈MK

[Kv ∶ Qv ]
[K ∶ Q] log

+ ∣α∣v

with:

K is any number field containing α

MK the set of places of K .
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For f ∈ C[T ,T−1], its (logarithmic) Mahler measure is:

m(f ) ∶= 1

2π
∫

2π

0
log ∣f (e iθ)∣ dθ.

One has, for fα the minimal polynomial of α over Z:

hWeil(α) = m(fα)
deg(fα)

.
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Let f ∈ Z[T ,T−1],

Z (f ) the cycle of its zeros in the torus Q
×

.
Then

hWeil(Z (f )) = m(f ).

GOAL:
show a similar relation for more general height functions
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Adelic Arakelov geometry

Algebraic datum:

an adelic field satisfying the product formula (e.g. a global
field)

Geometric data:

a proper variety X over K and a Cartier divisor D over X

Analytic data:

a semipositive continuous metric on the analytifications of
O(D)
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Height of cycles

For a cycle Z in X :

Bézout-type relation + sections ↝ local heights of Z

if almost all local heights are zero ↝ global height hD (Z )

Remark: it is the arithmetic analogue of the degree

difficult to compute!

Roberto GUALDI Heights of cycles in toric varieties



Arakelov geometry of toric varieties
Some notions in convex geometry

Height of hypersurfaces in toric varieties
Higher codimensions

Adelic Arakelov geometry
Toric varieties
Arakelov Geometry on toric varieties
A question

Height of cycles

For a cycle Z in X :
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Toric varieties

Let M be a lattice, K [M] = ⨁m∈M K ⋅ χm
the K -algebra of

Laurent polynomials

T = SpecK [M] is a split torus

A toric variety with torus T is a normal variety X over K on
which T acts with a dense orbit

Examples: affine spaces, projective spaces,...
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Why toric varieties?

Toric varieties have provided a remarkably fertile testing
ground for general theories [...] (Their properties make)
everything much more computable and concrete than
usual.

(William Fulton, Introduction to Toric Varieties)
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Reason: their algebro-geometric concepts can be described in
terms of objects from convex geometry

arithmetically: Maillot (2000), Burgos Gil, Philippon and Sombra
(2014)

N ∶= M
∨
= Hom(M,Z)

NR ∶= N ⊗ R
MR ∶= M ⊗ R
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Tropicalization

For a place v , the v-adic tropicalization map is

tropv ∶ T
an
v → NR = Hom(M,R)

x ↦ (m ↦ − log ∥χm∥x ).

If v is archimedean,

(z1, . . . , zn) ↦ (− log ∣z1∣, . . . ,− log ∣zn∣).
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Adelic Arakelov geometry on toric varieties

Arakelov
geometry

toric case

convex geometry

proper variety X
proper toric

variety X
complete fan Σ in

NR

Cartier divisor D
toric Cartier

divisor D
convex polytope

∆D in MR

semipositive
metric on O(D)an

v

semipositive toric
metric on O(D)an

v

continuous
concave function

ϑv on ∆D
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The polytope ∆D carries enough information about D to
determine the degree

Proposition (Oda)

D a globally generated toric divisor,

degD (X ) = n! vol(∆D ).

The roof functions ϑv are enough to determine the D-height

Theorem (Burgos Gil, Philippon, Sombra)

D an “adelic” semipositive toric metrized divisor,

hD (X ) = (n + 1)! ∑
v∈MK

nv ∫
∆D

ϑv d vol .
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An example

X = Pn

D hyperplane at infinity

canonical metric at each place ϑv ≡ 0 ∀v

degD (Pn) = 1

hWeil(Pn) = 0.
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What about non toric cycles?

f ∈ K [M], Yf the hypersurface in X it defines

Proposition

D a globally generated toric divisor,

degD (Yf ) = MV(∆D , . . . ,∆D ,NP(f )).

with:

MV a polarization of the volume of convex bodies

NP(f ) the Newton polytope of f .

what about hD (Yf )?
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Sup-convolution

For two concave functions on polytopes

f ∶ P → R
g ∶ Q → R,

their sup-convolution is

(f ⊞ g )(x) ∶= sup
y+z=x

(f (y ) + g (z)).
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Mixed integrals

Let µ be a measure on Rn
.

Let g0, . . . , gn be concave functions on convex bodies Q0, . . . ,Qn

in Rn
.

Their mixed integral is

MIµ(g0, . . . , gn) ∶=
n

∑
k=0

(−1)n−k ∑
0≤i0<⋅⋅⋅<ik≤n

∫
Qi0

+⋅⋅⋅+Qik

gi0 ⊞ ⋅ ⋅ ⋅ ⊞ gik dµ.
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f g

MIµ(f , g ) = ∫
P+Q

(f ⊞ g )dµ − ∫
P
fdµ − ∫

Q
gdµ.

f ⊞ g
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The setting

Let X be a proper toric variety over K with torus T = SpecK [M].

Let Y be a hypersurface in X , intersecting T
�

f ∈ K [M]
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Ronkin functions

Definition

For a place v of K , the v-adic Ronkin function of f is

ρf ,v ∶ NR → R,

u ↦ ∫
trop−1

v (u)
− log ∥f ∥x d HaarSh(trop−1

v (u)) .
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when v is archimedean

,

ρf ,v (u) ∶=
1

(2π)n ∫
[0,2π]n

− log ∣f (e−u1+iθ1 , . . . , e
−un+iθn )∣ dθ1 . . . dθn,

when v is non-archimedean, f = ∑ cmχ
m

,

ρf ,v (u) = min
m

(⟨m, u⟩ − log ∣cm∣) = f
trop(u).
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Proposition

For every place v

ρf ,v is concave

the Legendre-Fenchel dual ρ
∨
f ,v ∶ MR → R

ρ
∨
f ,v (x) ∶= inf

u∈NR
(⟨x , u⟩ − f (u))

is defined over NP(f ).
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An equality

Theorem (G.)

D an “adelic” semipositive toric metrized divisor, the height of Y
is given by

hD (Y ) = ∑
v∈M

nv MIM (ϑv , . . . , ϑv , ρ∨f ,v ).
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Examples

binomial hypersurfaces

Pn
Q, D hyperplane at infinity endowed with canonical metrics,

then
hWeil(Y ) = − ∑

v∈M

ρf ,v (0)

= −ρf ,∞(0) = m(f )

with f the minimal polynomial for Y over Z (Maillot).
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The setting

Let X be a proper toric variety over K with torus T = SpecK [M].

Let f1, . . . , fk ∈ K [M] “compatible” with X .

Let Z (f1, . . . , fk ) be the cycle in X obtained by intersecting the
corresponding sections.

Suppose it has codimension k .
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Proposition

D a globally generated toric divisor,

degD (Z (f1, . . . , fk )) = MV(∆D , . . . ,∆D ,NP(f1), . . . ,NP(fk )).

TEMPTATION:

hD (Z (f1, . . . , fk ))
?
= ∑

v∈M

nv MIM (ϑv , . . . , ϑv , ρ∨f1,v , . . . , ρ
∨
fk ,v ).
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A counterexample

X = P2
, D the hyperplane at infinity endowed with canonical

metrics

f = 1 + x + y

g = 1 + ζ
2
3x + ζ3y

g
′
= 1 − x + ζ4y

For every place v one has ρf ,v = ρg ,v = ρg ′,v but

hWeil(Z (f , g )) = 0 hWeilZ ((f , g ′)) = 1

2
log 2.
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Upper bounds

For k = n and in a slightly different situation already studied by
Mart́ınez and Sombra (2018)

Definition

For a place v of K , the v-adic upper function of f is

µf ,v ∶ NR → R,
u ↦ − max

trop−1
v (u)

log ∥f ∥x .
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Theorem (G.)

D an “adelic” semipositive toric metrized divisor,

then

hD (Z (f1, . . . , fk )) ≤ ∑
v∈M

nv MIM (ϑv , . . . , ϑv , µ∨f1,v , . . . , µ
∨
fk ,v ).
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