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Arakelov’s philosophy
I “Compactify” arithmetic varieties by analytic objects

I Combine analysis and algebraic geometry methods
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Geometry vs. arithmetics: case of vector bundles
k = Fq ?

k [T ] Z

C = P1
k Spec(Z) ∪ {∞}

k(C) = k(T ) Q

vector bundle E on C E = Zn with ‖·‖ on ER
deg(E) ∈ Z d̂eg(E , ‖·‖) := − ln‖e1 ∧ · · · ∧ en‖∈ R

H0(C,E) Ĥ0(E , ‖·‖) := {s ∈ E : ‖s‖ 6 1}

h0(E) := logq #H0(C,E) ∈ Z ĥ0(E , ‖·‖) := ln #H0(C,E)∈ R

Illustration of the arithmetic case

I Ĥ0(E , ‖·‖) := {s ∈ E : ‖s‖ 6 1} is not
stable under addition.
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Example: Minkowski’s first theorem (a particular case)

Theorem
Let (E , ‖·‖) be an Euclidean lattice of rank n.
If d̂eg(E , ‖·‖) > n

2 ln(n), then ĥ0(E , ‖·‖) > 0.

Geometric analogue
Let C be a regular projective curve over a field k and E be a
vector bundle of rank n on C. If deg(E) > n(g(C)− 1), then
h0(E) > 0.
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Adèles

Claude Chevalley André Weil

I View function fields and number fields in a unified way
I Treat equitably all places of a global field
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Geometry vs. arithmetics: an adelic view

k = Fq ?

k [T ] Z

C = P1
k Spec(Z) ∪ {∞}

k(C) = k(T ) Q

vector bundle E on C E = Zn with ‖·‖ on ER

deg(E) ∈ Z d̂eg(E , ‖·‖) := − ln‖e1 ∧ · · · ∧ en‖∈ R

H0(C,E) Ĥ0(E , ‖·‖) := {s ∈ E : ‖s‖ 6 1}

h0(E) := logq #H0(C,E) ∈ Z ĥ0(E , ‖·‖) := ln #H0(C,E)∈ R

Ωk(C) = {closed points of C} ΩQ := {2,3,5,7, . . .} ∪ {∞}

∀x ∈ Ωk(C), ‖·‖x on E ⊗OC k(C)x ∀ prime number p, ‖·‖p on E ⊗Z Qp

‖s‖x := inf{|a| : a ∈ k(C)×x , a−1s ∈ E ⊗OC Ok(C)x} ‖s‖p := inf{|a| : a ∈ Q×p , a−1s ∈ E ⊗Z Zp}

H0(C,E) = {s ∈ Ek(C) : supx∈Ωk(C)
‖s‖x 6 1} Ĥ0(E , ‖·‖) = {s ∈ EQ : supω∈ΩQ‖s‖ω 6 1}
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Adelic approach in Arakelov geometry: some references
Adelic vector bundles on a global field

I É. Gaudron, Pentes des fibrés vectoriels adéliques sur un corps
global, Rend. Sem. Mat. Univ. Padova, 119 (2008), see also
Cours de 3e cycle de J.-B. Bost at IHP.

Height of arithmetic variety wrt adelic line bundles

I S. Zhang, Positive line bundles on arithmetic varieties, J. Amer.
Math. Soc., 8 (1995).

I R. Rumely, C. Lau, R. Varley, Existence of the sectional
capacity, Mem. Amer. Math. Soc. 145 (2000).

I A. Moriwaki, Adelic divisors on arithmetic varieties, Mem. Amer.
Math. Soc 242 (2016).

Toric case

I V. Maillot, Géométrie d’Arakelov des variétés toriques et fibrés
intégrables, Mem. de la SMF 80 (2000).

I J. Burgos, P. Philippon, M. Sombra, Arithmetic geometry of toric
varieties, Astérisque 360 (2014).
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Beyond the classic adelic setting
Finitely generated field over Q
I A. Moriwaki, Arithmetic height functions over finitely

generated fields, Invent. Math. 140 (2000).

I K finitely generated extension of Q

I B normal projective Z-scheme s.t. K = Rat(B)

I H1, . . . ,Hd : C∞-hermitian line bundles on B, with
d = dim(B)− 1.

I To any projective morphism π : X → B and hermitian line
bundle L on X one associates a height function

h(B,H1,...,Hd )

(X ,L )
: XK (K ac)→ R

P 7→ d̂eg(ĉ1(L |∆P )·ĉ1(π∗(H1)|∆P )···ĉ1(π∗(Hd )|∆P ))

[K (P):K ] ,

∆P being the Zariski closure of P : Spec K →XK ↪→X .
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Beyond the classic adelic setting

Infinite algebraic extensions of Q
I É. Gaudron & G. Rémond, Corps de Siegel, Crell’s journal

726 (2017)

I K : algebraic extension of Q

I ΩK = lim←−
K/K ′/Q

[K ′:Q]<∞

ΩK ′ , with ΩK ′ = {places of K ′}.

I Adelic space: K -vector space of finite type E equipped with
(‖·‖E,v )v∈ΩK , ‖·‖E,v being a norm on E ⊗K Kv .

I Rigidity: Any basis of E is orthonormal for any v outside of
a compact set.

I Natural questions of Diophantine nature for rigid adelic
spaces: Northcott property, Minkowski’s theorems, Siegel’s
lemma etc.
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Beyond the classic adelic setting
R-filtrations
I H. Chen, Convergence des polygones de

Harder-Narasimhan, Mem. de la SMF 120 (2010)
I Let K be a field and E be a K -vector space of finite type.

I R-filtration on E : a family F = (F t (E))t∈R of vector
subspaces of E
� t1 6 t2 ⇒ F t1(E) ⊃ F t2(E)

� F t(E) = E for t sufficiently negative

� F t(E) = {0} for t sufficiently positive

� the function t 7→ rk(F t(E)) is left continuous

I We equip K with the trivial valuation (|a| = 1 for a ∈ K×)

{R-filtrations on E}←→{ultrametric norms on E}
F ←→ (s ∈ E) 7→ ‖s‖ = exp(− sup{t ∈ R : s ∈ F t (E)}).

I Application: projection to trivial valuation arithmetic
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Illustration: R-filtration of a lattice

I E = (E , ‖·‖) an Euclidean lattice

The filtration by minima

F t (EQ) := VectQ({s ∈ E : ‖s‖ 6 e−t}), t ∈ R.

I Captures the logarithmic successive minima.
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Adelic curve
I K : a field, MK : set of all absolute values on K

Definition
We call adelic structure on K a measure space (Ω,A, ν) with a
map φ : Ω→ MK , (ω ∈ Ω) 7→ |·|ω such that, for any a ∈ K×, the
function ω 7→ ln |a|ω is ν-integrable. S = (K , (Ω,A, ν), φ) is
called an adelic curve. If the “product formula”

∀a ∈ K×,
∫

Ω ln |a|ω ν(dω) = 0

holds, S is said to be proper.

Remark
I Similar to the notion of M-field of Gubler.

W. Gubler, Heights of subvarieties over M-fields, in
Sympos. Math. XXXVII, 1997.

I Our purpose is to develop a geometry of vector bundles on
adelic curves to study arithmetic invariants of linear series.
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Adelic vector bundles: dominancy
I Fix an adelic curve S = (K , (Ω,A, ν), φ) and a vector

space of finite type E over K .
I For ω ∈ Ω, let Kω be the completion of K wrt |·|ω.

Definition
I We call norm family on E any family ξ = (‖·‖ω)ω∈Ω, where
‖·‖ω is a norm on E ⊗K Kω. ξ is said to be hermitian if ‖·‖ω
is ultrametric (resp. euclidean/hermitian) once |·|ω is
non-archimedean (resp. archimedean).

I ξ induces a dual norm family ξ∨ = (‖·‖∗ω)ω∈Ω on E∨.
I We say that ξ is upper dominated if for any s ∈ E \ {0} the

function (ω ∈ Ω) 7→ ln‖s‖ω is bounded from above by a
ν-integrable function.

I We say that ξ is dominated if both ξ and ξ∨ are upper
dominated.

I If ξ is dominated, for any s ∈ E \ {0}, (ω ∈ Ω) 7→ | ln‖s‖ω| is
bounded from above by a ν-integrable function.
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Adelic vector bundles: measurability

I Fix an adelic curve S = (K , (Ω,A, ν), φ), a vector space of
finite type E over K and a norm family ξ = (‖·‖ω)ω∈Ω.

Definition
I We say that ξ is measurable if for any s ∈ E the function

(ω ∈ Ω) 7→ ‖s‖ω is A-measurable.
I If ξ is dominated and if ξ and ξ∨ are both measurable, we

say that (E , ξ) is an adelic vector bundle on S. If in addition
rkK (E) = 1, we say that (E , ξ) is an adelic line bundle.

I For s ∈ E \ {0} the Arakelov degree of s wrt ξ is defined as

d̂egξ(s) := −
∫
ω∈Ω

ln‖s‖ω ν(dω), s ∈ E \ {0}.

I If S is proper, then for any a ∈ K×, d̂egξ(as) = d̂egξ(s).
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Examples of proper adelic curves
Number fields
I K : number field, ΩK : set of places, A: discrete σ-algebra
I for ω ∈ ΩK , ν({ω}) = [Kω : Qω].

One trivial valuation
I Ω = {ω}, A is the trivial σ-algebra, ν({ω}) = 1.
I R-filtered vector space of finite rank (E ,F) can be viewed

as an adelic vector bundle (E , ξF )

∀ s ∈ E \ {0}, d̂egξF (s) = sup{t ∈ R : s ∈ F t (E)}.

Several copies of the trivial valuation

I (Ω,A, ν) arbitrary measure space
I φ : Ω→ MK , ω 7→ the trivial absolute value
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Example: function field over Q
K = Q(T ) field of rational functions of one variable T

Three types of absolute values

I For closed x ∈ P1
Q, let ordx (·) be valuation on K of x .

I If x ∈ P1
Q \ {∞} = A1

Q, it corresponds to an irreducible
Fx ∈ Z[T ] with coprime coefficients and we let

∀ϕ ∈ K , |ϕ|x := Ma(x)− ordx (ϕ),

where Ma(x) := exp(
∫ 1

0 ln |Fx (e2πit )|dt) is the Mahler
measure of Fx .

I By convention |·|∞ is the trivial absolute value on K .
I For prime number p, let |·|p be the p-adic absolute value on

Q, which extends naturally to Q(T ):

∀ f = adT d + · · ·+ a0 ∈ Q[T ], |f |p := max
j∈{0,...,d}

|aj |p.

I For t ∈ [0,1] with e2πit transcendental, let |ϕ|t := |ϕ(e2πit )|.
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Function field on Q: adelic structure
I Ωh = {closed points of P1

Q}.
I P = {prime numbers}.
I [0,1]∗ = {t ∈ [0,1] : e2πit is transcendental}.

Adelic structure on Q(T )

I Ω = Ωh q P q [0,1]∗.
I Let A be the σ-algebra on Ω generated by the discrete
σ-algebras on Ωh and P, and the Borel σ-algebra on [0,1]∗.

I Let ν be the measure on Ω such that ν({ω}) = 1 for
ω ∈ Ωh ∪ P and that ν|[0,1]∗ = the Lebesgue measure.

Product formula
For f = aF r1

x1
· · ·F rn

xn ∈ Q[T ], with a ∈ Q×, one has∫ t

0
ln |f (e2πit )|dt = ln |a|+

n∑
j=1

rj ln Ma(xj).
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Other examples

Polarised variety

I Let k be a field and X be a normal projective scheme of
dimension d > 1 over Spec k .

I K = k(X ) field of rational functions.
I We fix D1, . . . ,Dd−1 ample Cartier divisors on X .
I Ω = X (1) = {prime divisors in X}, equipped with the

discrete σ-algebra.
I For Y ∈ X (1), ν({Y}) := deg(D1 · · ·Dd−1 ∩ [Y ]).

Polarised arithmetic variety

I generalising the case of Q(T )

I Ω contains a horizontal part, a vertical part over finite
places of Q, and a vertical part over∞.

25 / 44



Algebraic covering
Fix S = (K , (Ω,A, ν), φ) and an algebraic extension L/K .

Construction of an adelic structure on L
I ΩL := Ω×MK ,φ ML

I Let πL/K : ΩL → Ω and φL : ΩL → ML, (x ∈ ΩL) 7→ |·|x be
the projection maps.

I Let AL be the smallest σ-algebra making πL/K and the
functions (x ∈ ΩL) 7→ |a|x measuralbe, where a ∈ L.

Theorem
There exists a unique measure νL on (ΩL,AL) and a unique
continuous linear map IL/K : L1(ΩL,AL, νL)→ L1(Ω,A, ν) s.t.
I For any f ∈ L1(ΩL,AL, νL),

∫
ΩL

f dνL =
∫

Ω IL/K (f ) dν.

I For any g ∈ L1(Ω,A, ν),
∫

Ω g dν =
∫

ΩL
g ◦ πL/K dνL.

I For any K ′/K finite sub-extension of L/K and any a ∈ K ′,
[K ′ : K ]

∫
ΩL

ln |a|x νL(dx) =
∫

Ω ln |NK ′/K (a)|ω ν(dω).
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Geometry of numbers of an adelic curve

Difficulties
I Not adequate to consider integral models.
I Northcott property is not true in general.
I The unit adelic ball may contain infinitely many elements of

the underlying field.
I Minkowski’s theorem does not apply to general adelic

curves (counter-example: 3 copies of the trivial valuation).

Idea: develop a slope theory for adelic vector bundles

I slope theory of Hermitian vector bundles in the case of
number fields:
J.-B. Bost, Appendix of Bourbaki talk “Périodes et
isogénies des variétés abéliennes sur les corps de
nombres”, Astérisque 237 (1996).
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Slope theory on an adelic curve
I Fix a proper adelic curve S = (K , (Ω,A, ν), φ).
I Assume that there exist a countable subfield K0 ⊂ K which

is dense in every Kω (ω ∈ Ω).
I The category of adelic vector bundles on S is stable by

usual algebraic operations (subbundle, quotient, direct
sum, tensor product, determinant etc)

Arakelov degree and slope
Let (E , ξ) be an adelic vector bundle on S, ξ = (‖·‖ω)ω∈Ω. The
Arakelov degree of (E , ξ) is defined as

d̂eg(E , ξ) := −
∫

Ω
ln‖s1 ∧ · · · ∧ sd‖ω,det ν(dω),

where (si)
d
i=1 is a basis of E over K .

If d > 0, the slope of (E , ξ) is defined as

µ̂(E , ξ) :=
1
d

d̂eg(E , ξ).

29 / 44



Slope theory on an adelic curve
I Fix a proper adelic curve S = (K , (Ω,A, ν), φ).
I Assume that there exist a countable subfield K0 ⊂ K which

is dense in every Kω (ω ∈ Ω).
I The category of adelic vector bundles on S is stable by

usual algebraic operations (subbundle, quotient, direct
sum, tensor product, determinant etc)

Arakelov degree and slope
Let (E , ξ) be an adelic vector bundle on S, ξ = (‖·‖ω)ω∈Ω. The
Arakelov degree of (E , ξ) is defined as

d̂eg(E , ξ) := −
∫

Ω
ln‖s1 ∧ · · · ∧ sd‖ω,det ν(dω),

where (si)
d
i=1 is a basis of E over K .

If d > 0, the slope of (E , ξ) is defined as

µ̂(E , ξ) :=
1
d

d̂eg(E , ξ).
30 / 44



Minimal slope and R-filtration by minimal slope
Minimal slope
Let E = (E , ξE ) be a non-zero adelic vector bundle. The
minimal slope of (E , ξE ) is defined as

µ̂min(E) := inf
E�G 6={0}

µ̂(G),

where on each quotient space G we consider the family of
quotient norms.

R-filtration by minimal slope

∀ t ∈ R, F t
hn(E) :=

∑
06=F⊂E
µ̂min(F )>t

F .

E is said to be semistable if Fhn only has one jump, or
equivalently µ̂min(F ) 6 µ̂min(E) for any non-zero subspace
F ⊂ E .
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Modified slope and Harder-Narasimhan filtration
E = (E , ξ) non-zero adelic vector bundle on S, ξ = (‖·‖ω)ω∈Ω.

Modified degree and slope
Let d̃eg(E) := −

∫
R t d rkK (F t

hn(E)) and µ̃(E) := d̃eg(E)/ rk(E).

I d̃eg(E) is just the weighted sum of jump points of the
R-filtration Fhn.

I If ξ is hermitian, then d̃eg(E) = d̂eg(E).

Theorem
There exists a unique flag 0 = E0 ( E1 ( . . . ( En = E of
vector subspaces of E such that each subquotient Ei/Ei−1 is
semistable and that µ̃(E1/E0) > . . . > µ̃(En/En−1).

Remark
New even for lattices (of non-Euclidean norm), compared with
I U. Stuhler, Ein Bemerkung zur Reduktionstheorie

quadratischen Formen, Archiv der Math. 27 (1976).
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Riemann-Roch theorem on adelic curves

Candidate for replacing ĥ0

For any adelic vector bundle E on S, let

d̂eg+(E) := sup
{0}6=F⊂E

d̂eg(F ).

Theorem
Let E be an adelic vector bundle on S. One has

0 6 d̂eg(E)− (d̂eg+(E∨∨)− d̂eg+(E∨)) 6
1
2

ln(rk(E))ν(Ω∞),

where Ω∞ = {ω ∈ Ω : |·|ω is archimedean}.

Remark
E∨∨ = E once ‖·‖ω is ultrametric for any ω ∈ Ω \ Ω∞.
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Higher dimensional geometry
Let π : X → Spec K be an integral projective K -scheme and L
be a line bundle on X .

Metric family
By metric family on L, we refer to a family ϕ = (ϕω)ω∈Ω where
ϕω is a continuous metric on Lan

ω .
I For defining an adelic metric, we can not follow the classic

approach since no integral model can be considered.

Dominancy
Assume that L is very ample. We equip E = H0(X ,L) with a
hermitian norm family ξ such that (E , ξ) is an adelic vector
bundle. Let ϕξ be the family of Fubini-Study metrics on L.
I We say that ϕ is dominated if the function

(ω ∈ Ω) 7→ sup
x∈X an

ω

∣∣∣∣ln |·|ϕω(x)

|·|ϕξ,ω(x)

∣∣∣∣
is bounded from above by a ν-integrable function.
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Higher dimensional geometry

Measurability
We say that a metric family ϕ is measurable if for any closed
point P of X the norm family P∗(ϕ) on P∗(L) is measurable.

Adelic line bundle
Let L be a line bundle on X and ϕ be a metric family on X . If
there exist very ample line bundles L1 and L2 equipped with
dominated and measurable metric families ϕ1 and ϕ2 such that
L ∼= L1 ⊗ L∨2 and ϕ ∼= ϕ1 ⊗ ϕ∨2 , we say that (L, ϕ) is an adelic
line bundle on X .
I Independent of various choices.
I Stable under tensor product and dual.
I P̂ic(X ): group of isomorphism classes of adelic vector

bundles on X
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Volume function
Linear system
Let (L, ϕ) be adelic line bundle. Then (H0(X ,L), (‖·‖ϕω)ω∈Ω) is
an adelic vector bundle on S, denoted by π∗(L, ϕ), where

‖s‖ϕω := sup
x∈X an

ω

|s|ϕω(x).

Volume function
Let (L, ϕ) be an adelic line bundle on X . The volume of (L, ϕ) is
define as

v̂ol(L, ϕ) := lim sup
n→+∞

d̂eg+(π∗((L, ϕ)⊗n))

nd+1/(d + 1)!
.

If v̂ol(L, ϕ) > 0, (L, ϕ) is said to be big.

I lim sup can be replaced by lim

I convex geometry interpretation
I Brunn-Minkowski inequality
I continuity of volume function
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Un peu de publicités

Monograph
(almost) self-contained, very detailed (about 400 pages),
available soon.

Lecture series
Kyoto University, every Tuesday from October 2nd to October
30th 2018, 7 lectures of 1h30

Graduate course
Université Paris Diderot, from January to April 2019, 24
lectures of 2 hours.
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Further research topics and problems
Fundamental problems

I For a fixed field K , what are proper adelic curve structures
on the field?

I Existence of compactification for a non-proper adelic curve.
I Categorical study of adelic curve and adelic vector

bundles.

Geometric problems

I Relation between the volume function and Gubler’s height
(Hilbert-Samuel type theorem).

I Arithmetic intersection theory for projective varieties over
an adelic curve. Riemann-Roch.

I Differentiability of the volume function, Bogomolov type of
problems, algebraic dynamical system over general fields.
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