Géométrie d'Arakelov sur une courbe adélique (joint work with Atsushi Moriwaki)

Intercity seminar in Arakelov geometry 2018

Huayi Chen

IMJ-PRG, Université Paris Diderot

September 4th, 2018

1/44

Arithmetic geometry

Objects

Schemes of finite type over $\operatorname{Spec} \mathbb{Z}$ (Diophantine systems)

Comparison with algebraic geometry

Algebraic geometry

Arithmetic geometry

Arithmetic geometry

Objects

Schemes of finite type over $\operatorname{Spec} \mathbb{Z}$ (Diophantine systems)

Comparison with algebraic geometry

Algebraic geometry

Arithmetic geometry

Special features of arithmetics

No base field

No "compact arithmetic curve"

Arakelov's philosophy

- "Compactify" arithmetic varieties by analytic objects
- Combine analysis and algebraic geometry methods

Algebraic geometry

Arakelov geometry

Arakelov's philosophy

- "Compactify" arithmetic varieties by analytic objects
- Combine analysis and algebraic geometry methods

Algebraic geometry

Arakelov geometry

Arakelov's philosophy

- Compactify" arithmetic varieties by analytic objects
- Combine analysis and algebraic geometry methods

Difficulties

- No algebraic structure on the "compactification"
- Analytic and algebraic methods are of very different nature

Geometry vs. arithmetics: case of vector bundles

 $egin{aligned} &k = \mathbb{F}_q \ &k[T] \ &C = \mathbb{P}_k^1 \ &k(C) = k(T) \ & ext{vector bundle E on C} \ & ext{deg}(E) \in \mathbb{Z} \ &H^0(C,E) \ &h^0(E) := \log_q \# H^0(C,E) \in \mathbb{Z} \end{aligned}$

? \mathbb{Z} Spec(\mathbb{Z}) $\cup \{\infty\}$ \mathbb{Q} $\mathcal{E} = \mathbb{Z}^n \text{ with } \|\cdot\| \text{ on } \mathcal{E}_{\mathbb{R}}$ $\widehat{\deg}(\mathcal{E}, \|\cdot\|) := -\ln\|e_1 \wedge \dots \wedge e_n\| \in \mathbb{R}$ $\widehat{H}^0(\mathcal{E}, \|\cdot\|) := \{s \in \mathcal{E} : \|s\| \leq 1\}$ $\widehat{h}^0(\mathcal{E}, \|\cdot\|) := \ln \# H^0(C, E) \in \mathbb{R}$

Geometry vs. arithmetics: case of vector bundles

$\textit{\textit{k}} = \mathbb{F}_{\textit{\textit{q}}}$?
k[T]	Z
${\mathcal C}={\mathbb P}^1_k$	$Spec(\mathbb{Z}) \cup \{\infty\}$
k(C) = k(T)	Q
vector bundle E on C	$\mathcal{E}=\mathbb{Z}^n$ with $\lVert \cdot Vert$ on $\mathcal{E}_{\mathbb{R}}$
$deg(\boldsymbol{E}) \in \mathbb{Z}$	$\widehat{deg}(\mathcal{E}, \ \cdot\) := -\ln\ \boldsymbol{e}_1 \wedge \cdots \wedge \boldsymbol{e}_n\ \in \mathbb{R}$
$H^0(C,E)$	$\widehat{H}^0(\mathcal{E}, \ {\cdot} \) \mathrel{\mathop:}= \{ {m{s}} \in \mathcal{E} : \ {m{s}} \ \leqslant 1 \}$
$h^0(E) := \log_q \# H^0(C,E) \in \mathbb{Z}$	$\widehat{h}^0(\mathcal{E}, \ {\cdot} \) := \ln \# H^0(\mathcal{C}, E) \in \mathbb{R}$

Illustration of the arithmetic case

*Ĥ*⁰(*E*, ∥·∥) := {*s* ∈ *E* : ∥*s*∥ ≤ 1} is not stable under addition.

Example: Minkowski's first theorem (a particular case)

Theorem

Let $(\mathcal{E}, \|\cdot\|)$ be an Euclidean lattice of rank *n*. If $\widehat{\deg}(\mathcal{E}, \|\cdot\|) \ge \frac{n}{2} \ln(n)$, then $\widehat{h}^0(\mathcal{E}, \|\cdot\|) > 0$.

Geometric analogue

Let *C* be a regular projective curve over a field *k* and *E* be a vector bundle of rank *n* on *C*. If deg(E) > n(g(C) - 1), then $h^0(E) > 0$.

Adèles

Claude Chevalley

André Weil

Adèles

Claude Chevalley

André Weil

- View function fields and number fields in a unified way
- Treat equitably all places of a global field

Geometry vs. arithmetics: an adelic view

$k = \mathbb{F}_q$?
k[T]	\mathbb{Z}
$\mathcal{C}=\mathbb{P}_k^1$	$Spec(\mathbb{Z}) \cup \{\infty\}$
k(C) = k(T)	Q
vector bundle E on C	$\mathcal{E} = \mathbb{Z}^n$ with $\ \cdot\ $ on $\mathcal{E}_{\mathbb{R}}$
$deg({\boldsymbol{E}})\in\mathbb{Z}$	$\widehat{\operatorname{deg}}(\mathcal{E}, \ \cdot\) := -\ln\ \boldsymbol{e}_1 \wedge \cdots \wedge \boldsymbol{e}_n\ \in \mathbb{R}$
$H^0(C,E)$	$\widehat{H}^0(\mathcal{E}, \ \cdot\) := \{ oldsymbol{s} \in \mathcal{E} \ : \ \ oldsymbol{s}\ \leqslant 1 \}$
$h^0(E):=\log_q \# H^0(C,E)\in \mathbb{Z}$	$\widehat{h}^0(\mathcal{E}, \ \cdot\) := \ln \# H^0(\mathcal{C}, \mathcal{E}) \in \mathbb{R}$

Geometry vs. arithmetics: an adelic view

$k=\mathbb{F}_q$?
<i>k</i> [<i>T</i>]	\mathbb{Z}
$\mathcal{C}=\mathbb{P}_k^1$	$Spec(\mathbb{Z}) \cup \{\infty\}$
k(C) = k(T)	Q
vector bundle <i>E</i> on <i>C</i>	$\mathcal{E} = \mathbb{Z}^n$ with $\ \cdot\ $ on $\mathcal{E}_{\mathbb{R}}$
$deg({\boldsymbol{E}})\in\mathbb{Z}$	$\widehat{deg}(\mathcal{E}, \ \cdot\) := -\ln\ \boldsymbol{e}_1 \wedge \cdots \wedge \boldsymbol{e}_n\ \in \mathbb{R}$
$H^0(C,E)$	$\widehat{H}^0(\mathcal{E}, \left\ \cdot\right\) := \{ \boldsymbol{s} \in \mathcal{E} \ : \ \ \boldsymbol{s}\ \leqslant 1 \}$
$h^0(E):=\log_q \# H^0(C,E)\in \mathbb{Z}$	$\widehat{h}^0(\mathcal{E},\ \cdot\):=\ln\#H^0(\mathcal{C},\mathcal{E})\in\mathbb{R}$
$\Omega_{k(C)} = \{ closed points of C \}$	$\Omega_{\mathbb{Q}}:=\{2,3,5,7,\ldots\}\cup\{\infty\}$
$\forall x \in \Omega_{k(C)}, \ \cdot\ _x \text{ on } E \otimes_{\mathcal{O}_C} k(C)_x$	$orall$ prime number $p, \ \cdot\ _p$ on $\mathcal{E} \otimes_{\mathbb{Z}} \mathbb{Q}_p$
$\ \boldsymbol{s}\ _x := \inf\{ \boldsymbol{a} : \boldsymbol{a} \in \boldsymbol{k}(\boldsymbol{\mathcal{C}})_x^{\times}, \boldsymbol{a}^{-1}\boldsymbol{s} \in \boldsymbol{E} \otimes_{\mathcal{O}_{\boldsymbol{\mathcal{C}}}} \mathcal{O}_{\boldsymbol{k}(\boldsymbol{\mathcal{C}})_x}\}$	$\ \boldsymbol{s}\ _{\boldsymbol{\rho}} := \inf\{ \boldsymbol{a} : \boldsymbol{a} \in \mathbb{Q}_{\boldsymbol{\rho}}^{\times}, \boldsymbol{a}^{-1}\boldsymbol{s} \in \mathcal{E} \otimes_{\mathbb{Z}} \mathbb{Z}_{\boldsymbol{\rho}}\}$
$H^0(\mathcal{C}, \mathcal{E}) = \{ s \in E_{k(\mathcal{C})} : \sup_{x \in \Omega_{k(\mathcal{C})}} \ s \ _x \leqslant 1 \}$	$\widehat{H}^0(\mathcal{E}, \ {\cdot} \) = \{ {\pmb{s}} \in {\pmb{E}}_{\mathbb{Q}} : \sup_{\omega \in \Omega_{\mathbb{Q}}} \ {\pmb{s}} \ _{\omega} \leqslant 1 \}$

1

Adelic approach in Arakelov geometry: some references

Adelic vector bundles on a global field

É. Gaudron, Pentes des fibrés vectoriels adéliques sur un corps global, *Rend. Sem. Mat. Univ. Padova*, **119** (2008), see also Cours de 3e cycle de J.-B. Bost at IHP.

Height of arithmetic variety wrt adelic line bundles

- S. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc., 8 (1995).
- R. Rumely, C. Lau, R. Varley, Existence of the sectional capacity, Mem. Amer. Math. Soc. 145 (2000).
- A. Moriwaki, Adelic divisors on arithmetic varieties, *Mem. Amer. Math. Soc* 242 (2016).

Toric case

- V. Maillot, Géométrie d'Arakelov des variétés toriques et fibrés intégrables, *Mem. de la SMF* 80 (2000).
- J. Burgos, P. Philippon, M. Sombra, Arithmetic geometry of toric varieties, Astérisque 360 (2014).

Beyond the classic adelic setting

Finitely generated field over $\ensuremath{\mathbb{Q}}$

- A. Moriwaki, Arithmetic height functions over finitely generated fields, *Invent. Math.* 140 (2000).
 - K finitely generated extension of \mathbb{Q}
 - *B* normal projective \mathbb{Z} -scheme s.t. $K = \operatorname{Rat}(B)$
 - ► $\overline{H}_1, \ldots, \overline{H}_d$: C^{∞} -hermitian line bundles on *B*, with $d = \dim(B) 1$.
 - To any projective morphism π : X → B and hermitian line bundle Z on X one associates a height function

$$\begin{split} & h_{(\mathscr{X},\overline{\mathscr{Z}})}^{(\mathcal{B},\overline{H}_{1},...,\overline{H}_{d})}:\mathscr{X}_{K}(K^{\mathrm{ac}}) \to \mathbb{R} \\ & P \mapsto \frac{\widehat{\mathrm{deg}}(\widehat{c}_{1}(\overline{\mathscr{Z}}|_{\Delta_{P}})\cdot\widehat{c}_{1}(\pi^{*}(\overline{H}_{1})|_{\Delta_{P}})\cdots\widehat{c}_{1}(\pi^{*}(\overline{H}_{d})|_{\Delta_{P}}))}{[K(P):K]}, \end{split}$$

 Δ_P being the Zariski closure of P: Spec $\overline{K} \to \mathscr{X}_K \hookrightarrow \mathscr{X}$.

Beyond the classic adelic setting

Infinite algebraic extensions of $\ensuremath{\mathbb{Q}}$

- É. Gaudron & G. Rémond, Corps de Siegel, Crell's journal 726 (2017)
 - K: algebraic extension of \mathbb{Q}

•
$$\Omega_{K} = \varprojlim_{\substack{K/K'/\mathbb{Q}\\[K':\mathbb{Q}]<\infty}} \Omega_{K'}$$
, with $\Omega_{K'} = \{ \text{places of } K' \}.$

- Adelic space: *K*-vector space of finite type *E* equipped with $(\|\cdot\|_{E,v})_{v \in \Omega_K}$, $\|\cdot\|_{E,v}$ being a norm on $E \otimes_K K_v$.
- Rigidity: Any basis of E is orthonormal for any v outside of a compact set.
- Natural questions of Diophantine nature for rigid adelic spaces: Northcott property, Minkowski's theorems, Siegel's lemma etc.

Beyond the classic adelic setting

\mathbb{R} -filtrations

- H. Chen, Convergence des polygones de Harder-Narasimhan, Mem. de la SMF 120 (2010)
 - ▶ Let *K* be a field and *E* be a *K*-vector space of finite type.
 - ▶ R-filtration on E: a family F = (F^t(E))_{t∈R} of vector subspaces of E
 - $\diamond \ t_1 \leqslant t_2 \Rightarrow \mathcal{F}^{t_1}(E) \supset \mathcal{F}^{t_2}(E)$
 - ♦ $\mathcal{F}^t(E) = E$ for t sufficiently negative
 - ◇ $\mathcal{F}^t(E) = \{0\}$ for *t* sufficiently positive
 - ♦ the function $t \mapsto \mathsf{rk}(\mathcal{F}^t(E))$ is left continuous
 - We equip *K* with the trivial valuation (|a| = 1 for $a \in K^{\times}$)

{ \mathbb{R} -filtrations on E} \longleftrightarrow {ultrametric norms on E} $\mathcal{F} \longleftrightarrow (s \in E) \mapsto ||s|| = \exp(-\sup\{t \in \mathbb{R} : s \in \mathcal{F}^t(E)\}).$

Application: projection to trivial valuation arithmetic

Illustration: R-filtration of a lattice

▶
$$\overline{E} = (E, \|\cdot\|)$$
 an Euclidean lattice

The filtration by minima

$$\mathcal{F}^t(E_\mathbb{Q}) := \mathsf{Vect}_\mathbb{Q}(\{s \in E \, : \, \|s\| \leqslant \mathrm{e}^{-t}\}), \quad t \in \mathbb{R}.$$

Captures the logarithmic successive minima.

Adelic curve

 \blacktriangleright *K*: a field, *M_K*: set of all absolute values on *K*

Definition

We call adelic structure on *K* a measure space $(\Omega, \mathcal{A}, \nu)$ with a map $\phi : \Omega \to M_K$, $(\omega \in \Omega) \mapsto |\cdot|_{\omega}$ such that, for any $a \in K^{\times}$, the function $\omega \mapsto \ln |a|_{\omega}$ is ν -integrable. $S = (K, (\Omega, \mathcal{A}, \nu), \phi)$ is called an adelic curve. If the "product formula"

$$orall \, a \in {\mathcal K}^{ imes}, \quad \int_\Omega \ln |a|_\omega \,
u({
m d} \omega) = 0$$

holds, S is said to be proper.

Remark

- Similar to the notion of *M*-field of Gubler.
 W. Gubler, Heights of subvarieties over *M*-fields, in Sympos. Math. XXXVII, 1997.
- Our purpose is to develop a geometry of vector bundles on adelic curves to study arithmetic invariants of linear series.

Adelic vector bundles: dominancy

- Fix an adelic curve S = (K, (Ω, A, ν), φ) and a vector space of finite type E over K.
- For $\omega \in \Omega$, let K_{ω} be the completion of K wrt $|\cdot|_{\omega}$.

Definition

- We call norm family on *E* any family ξ = (||·||_ω)_{ω∈Ω}, where ||·||_ω is a norm on *E* ⊗_K K_ω. ξ is said to be hermitian if ||·||_ω is ultrametric (resp. euclidean/hermitian) once |·|_ω is non-archimedean (resp. archimedean).
- ► ξ induces a dual norm family $\xi^{\vee} = (\|\cdot\|_{\omega}^*)_{\omega \in \Omega}$ on E^{\vee} .
- We say that ξ is upper dominated if for any s ∈ E \ {0} the function (ω ∈ Ω) → ln ||s||_ω is bounded from above by a ν-integrable function.
- We say that ξ is dominated if both ξ and ξ[∨] are upper dominated.
- If ξ is dominated, for any s ∈ E \ {0}, (ω ∈ Ω) → | ln ||s||_ω| is bounded from above by a ν-integrable function.

Adelic vector bundles: measurability

Fix an adelic curve S = (K, (Ω, A, ν), φ), a vector space of finite type E over K and a norm family ξ = (||·||_ω)_{ω∈Ω}.

Definition

- We say that ξ is measurable if for any s ∈ E the function (ω ∈ Ω) → ||s||_ω is A-measurable.
- If ξ is dominated and if ξ and ξ[∨] are both measurable, we say that (E, ξ) is an adelic vector bundle on S. If in addition rk_K(E) = 1, we say that (E, ξ) is an adelic line bundle.
- For $s \in E \setminus \{0\}$ the Arakelov degree of s wrt ξ is defined as

$$\widehat{\deg}_{\xi}(\boldsymbol{s}) := -\int_{\omega\in\Omega} \ln \|\boldsymbol{s}\|_{\omega} \, \nu(\mathrm{d}\omega), \quad \boldsymbol{s}\in \boldsymbol{E}\setminus\{\boldsymbol{0}\}.$$

▶ If *S* is proper, then for any $a \in K^{\times}$, $\widehat{\deg}_{\xi}(as) = \widehat{\deg}_{\xi}(s)$.

Examples of proper adelic curves Number fields

• *K*: number field, $Ω_K$: set of places, *A*: discrete *σ*-algebra

• for
$$\omega \in \Omega_K$$
, $\nu(\{\omega\}) = [K_\omega : \mathbb{Q}_\omega]$.

One trivial valuation

- $\Omega = \{\omega\}, \mathcal{A} \text{ is the trivial } \sigma\text{-algebra}, \nu(\{\omega\}) = 1.$
- R-filtered vector space of finite rank (E, F) can be viewed as an adelic vector bundle (E, ξ_F)

$$\forall s \in E \setminus \{0\}, \quad \widehat{\mathsf{deg}}_{\xi_{\mathcal{F}}}(s) = \sup\{t \in \mathbb{R} \, : \, s \in \mathcal{F}^t(E)\}.$$

Several copies of the trivial valuation

Example: function field over Q

 $K = \mathbb{Q}(T)$ field of rational functions of one variable T

Three types of absolute values

For closed $x \in \mathbb{P}^1_{\mathbb{O}}$, let $\operatorname{ord}_x(\cdot)$ be valuation on K of x.

If x ∈ P¹_Q \ {∞} = A¹_Q, it corresponds to an irreducible F_x ∈ Z[T] with coprime coefficients and we let

$$\forall \varphi \in K, \quad |\varphi|_{x} := Ma(x)^{-\operatorname{ord}_{x}(\varphi)},$$

where $Ma(x) := \exp(\int_0^1 \ln |F_x(e^{2\pi it})| dt)$ is the Mahler measure of F_x .

- By convention $|\cdot|_{\infty}$ is the trivial absolute value on *K*.
- For prime number p, let $|\cdot|_p$ be the p-adic absolute value on \mathbb{Q} , which extends naturally to $\mathbb{Q}(T)$:

$$\forall f = a_d T^d + \cdots + a_0 \in \mathbb{Q}[T], \quad |f|_p := \max_{j \in \{0,\ldots,d\}} |a_j|_p.$$

For $t \in [0, 1]$ with $e^{2\pi i t}$ transcendental, let $|\varphi|_t := |\varphi(e^{2\pi i t})|_{\mathbb{R}}$

Function field on Q: adelic structure

- $\Omega_h = \{ \text{closed points of } \mathbb{P}^1_{\mathbb{Q}} \}.$
- $\blacktriangleright \mathcal{P} = \{ \text{prime numbers} \}.$
- $[0,1]_* = \{t \in [0,1] : e^{2\pi i t} \text{ is transcendental}\}.$

Adelic structure on $\mathbb{Q}(T)$

 $\blacktriangleright \ \Omega = \Omega_h \amalg \mathcal{P} \amalg [0,1]_*.$

- Let A be the σ-algebra on Ω generated by the discrete σ-algebras on Ω_h and P, and the Borel σ-algebra on [0, 1]_{*}.
- Let ν be the measure on Ω such that ν({ω}) = 1 for ω ∈ Ω_h ∪ P and that ν|_{[0,1]*} = the Lebesgue measure.

Product formula

For $f = aF_{x_1}^{r_1} \cdots F_{x_n}^{r_n} \in \mathbb{Q}[T]$, with $a \in \mathbb{Q}^{\times}$, one has

$$\int_0^t \ln |f(e^{2\pi i t})| dt = \ln |a| + \sum_{j=1}^n r_j \ln Ma(x_j).$$

Other examples

Polarised variety

- Let k be a field and X be a normal projective scheme of dimension d ≥ 1 over Spec k.
- K = k(X) field of rational functions.
- We fix D_1, \ldots, D_{d-1} ample Cartier divisors on *X*.
- Ω = X⁽¹⁾ = {prime divisors in X}, equipped with the discrete σ-algebra.

▶ For
$$Y \in X^{(1)}$$
, $\nu({Y}) := deg(D_1 \cdots D_{d-1} \cap [Y])$.

Polarised arithmetic variety

- generalising the case of $\mathbb{Q}(T)$
- Ω contains a horizontal part, a vertical part over finite places of Q, and a vertical part over ∞.

Algebraic covering

Fix $S = (K, (\Omega, A, \nu), \phi)$ and an algebraic extension L/K.

Construction of an adelic structure on L

$$\triangleright \ \Omega_L := \Omega \times_{M_K,\phi} M_L$$

- Let π_{L/K} : Ω_L → Ω and φ_L : Ω_L → M_L, (x ∈ Ω_L) ↦ |·|_x be the projection maps.
- Let A_L be the smallest σ-algebra making π_{L/K} and the functions (x ∈ Ω_L) → |a|_x measuralbe, where a ∈ L.

Theorem

There exists a unique measure ν_L on $(\Omega_L, \mathcal{A}_L)$ and a unique continuous linear map $I_{L/K} : \mathcal{L}^1(\Omega_L, \mathcal{A}_L, \nu_L) \to \mathcal{L}^1(\Omega, \mathcal{A}, \nu)$ s.t.

- ► For any $f \in \mathcal{L}^1(\Omega_L, \mathcal{A}_L, \nu_L)$, $\int_{\Omega_L} f \, d\nu_L = \int_{\Omega} I_{L/K}(f) \, d\nu$.
- ► For any $g \in \mathcal{L}^1(\Omega, \mathcal{A}, \nu)$, $\int_{\Omega} g \, d\nu = \int_{\Omega_L} g \circ \pi_{L/K} \, d\nu_L$.
- For any K'/K finite sub-extension of L/K and any $a \in K'$, $[K':K] \int_{\Omega_L} \ln |a|_x \nu_L(dx) = \int_{\Omega} \ln |N_{K'/K}(a)|_\omega \nu(d\omega).$

Geometry of numbers of an adelic curve

Difficulties

- Not adequate to consider integral models.
- Northcott property is not true in general.
- The unit adelic ball may contain infinitely many elements of the underlying field.
- Minkowski's theorem does not apply to general adelic curves (counter-example: 3 copies of the trivial valuation).

Geometry of numbers of an adelic curve

Difficulties

- Not adequate to consider integral models.
- Northcott property is not true in general.
- The unit adelic ball may contain infinitely many elements of the underlying field.
- Minkowski's theorem does not apply to general adelic curves (counter-example: 3 copies of the trivial valuation).

Idea: develop a slope theory for adelic vector bundles

slope theory of Hermitian vector bundles in the case of number fields:

J.-B. Bost, Appendix of Bourbaki talk "Périodes et isogénies des variétés abéliennes sur les corps de nombres", *Astérisque* **237** (1996).

Slope theory on an adelic curve

- Fix a proper adelic curve $S = (K, (\Omega, A, \nu), \phi)$.
- Assume that there exist a countable subfield K₀ ⊂ K which is dense in every K_ω (ω ∈ Ω).
- The category of adelic vector bundles on S is stable by usual algebraic operations (subbundle, quotient, direct sum, tensor product, determinant etc)

Arakelov degree and slope

Let (E,ξ) be an adelic vector bundle on $S, \xi = (\|\cdot\|_{\omega})_{\omega \in \Omega}$. The Arakelov degree of (E,ξ) is defined as

$$\widehat{\operatorname{deg}}(\boldsymbol{\mathsf{E}},\xi):=-\int_{\Omega}\ln\|\boldsymbol{s}_{1}\wedge\cdots\wedge\boldsymbol{s}_{\mathsf{d}}\|_{\omega,\operatorname{det}}\,
u(\operatorname{d}\!\omega),$$

where $(s_i)_{i=1}^d$ is a basis of *E* over *K*.

Slope theory on an adelic curve

- Fix a proper adelic curve $S = (K, (\Omega, A, \nu), \phi)$.
- Assume that there exist a countable subfield K₀ ⊂ K which is dense in every K_ω (ω ∈ Ω).
- The category of adelic vector bundles on S is stable by usual algebraic operations (subbundle, quotient, direct sum, tensor product, determinant etc)

Arakelov degree and slope

Let (E,ξ) be an adelic vector bundle on $S, \xi = (\|\cdot\|_{\omega})_{\omega \in \Omega}$. The Arakelov degree of (E,ξ) is defined as

$$\widehat{\mathsf{deg}}(\boldsymbol{\mathsf{E}},\xi) := -\int_{\Omega} \mathsf{ln} \| \boldsymbol{s}_1 \wedge \dots \wedge \boldsymbol{s}_{\mathcal{d}} \|_{\omega,\mathsf{det}} \, \nu(\mathsf{d}\omega),$$

where $(s_i)_{i=1}^d$ is a basis of *E* over *K*. If d > 0, the slope of (E, ξ) is defined as

$$\widehat{\mu}(E,\xi) := \frac{1}{d}\widehat{\deg}(E,\xi).$$

Minimal slope and \mathbb{R} -filtration by minimal slope

Minimal slope

Let $\overline{E} = (E, \xi_E)$ be a non-zero adelic vector bundle. The minimal slope of (E, ξ_E) is defined as

$$\widehat{\mu}_{\min}(\overline{E}) := \inf_{E \twoheadrightarrow G \neq \{0\}} \widehat{\mu}(\overline{G}),$$

where on each quotient space G we consider the family of quotient norms.

 $\mathbb R\text{-filtration}$ by minimal slope

$$orall t \in \mathbb{R}, \quad \mathcal{F}_{\mathrm{hn}}^t(\overline{E}) := \sum_{\substack{0
eq F \subset E \ \widehat{\mu}_{\min}(\overline{F}) \geqslant t}} F.$$

 \overline{E} is said to be semistable if \mathcal{F}_{hn} only has one jump, or equivalently $\widehat{\mu}_{min}(\overline{F}) \leq \widehat{\mu}_{min}(\overline{E})$ for any non-zero subspace $F \subset E$.

Modified slope and Harder-Narasimhan filtration

 $\overline{E} = (E, \xi)$ non-zero adelic vector bundle on $S, \xi = (\|\cdot\|_{\omega})_{\omega \in \Omega}$.

Modified degree and slope

Let $\widetilde{\operatorname{deg}}(\overline{E}) := -\int_{\mathbb{R}} t \, d \operatorname{rk}_{\mathcal{K}}(\mathcal{F}_{\operatorname{hn}}^t(\overline{E})) \text{ and } \widetilde{\mu}(\overline{E}) := \widetilde{\operatorname{deg}}(\overline{E}) / \operatorname{rk}(E).$

- $\widetilde{\deg}(\overline{E})$ is just the weighted sum of jump points of the \mathbb{R} -filtration \mathcal{F}_{hn} .
- If ξ is hermitian, then $\widetilde{\deg}(\overline{E}) = \widehat{\deg}(\overline{E})$.

Theorem

There exists a unique flag $0 = E_0 \subsetneq E_1 \subsetneq \ldots \subsetneq E_n = E$ of vector subspaces of *E* such that each subquotient $\overline{E_i/E_{i-1}}$ is semistable and that $\widetilde{\mu}(\overline{E_1/E_0}) > \ldots > \widetilde{\mu}(E_n/E_{n-1})$.

Modified slope and Harder-Narasimhan filtration

 $\overline{E} = (E, \xi)$ non-zero adelic vector bundle on $S, \xi = (\|\cdot\|_{\omega})_{\omega \in \Omega}$.

Modified degree and slope

Let $\widetilde{\operatorname{deg}}(\overline{E}) := -\int_{\mathbb{R}} t \, d \operatorname{rk}_{\mathcal{K}}(\mathcal{F}_{\operatorname{hn}}^t(\overline{E})) \text{ and } \widetilde{\mu}(\overline{E}) := \widetilde{\operatorname{deg}}(\overline{E}) / \operatorname{rk}(E).$

- $\widetilde{\deg}(\overline{E})$ is just the weighted sum of jump points of the \mathbb{R} -filtration \mathcal{F}_{hn} .
- If ξ is hermitian, then $\widetilde{\deg}(\overline{E}) = \widehat{\deg}(\overline{E})$.

Theorem

There exists a unique flag $0 = E_0 \subsetneq E_1 \subsetneq \ldots \subsetneq E_n = E$ of vector subspaces of *E* such that each subquotient $\overline{E_i/E_{i-1}}$ is semistable and that $\widetilde{\mu}(\overline{E_1/E_0}) > \ldots > \widetilde{\mu}(E_n/E_{n-1})$.

Remark

New even for lattices (of non-Euclidean norm), compared with

 U. Stuhler, Ein Bemerkung zur Reduktionstheorie quadratischen Formen, Archiv der Math. 27 (1976).

Riemann-Roch theorem on adelic curves

Candidate for replacing \hat{h}^0

For any adelic vector bundle \overline{E} on S, let

$$\widehat{\mathsf{deg}}_+(\overline{E}) := \sup_{\{0\} \neq F \subset E} \widehat{\mathsf{deg}}(\overline{F}).$$

Theorem Let \overline{E} be an adelic vector bundle on *S*. One has

$$0 \leqslant \widehat{\mathsf{deg}}(\overline{E}) - (\widehat{\mathsf{deg}}_+(\overline{E}^{\vee\vee}) - \widehat{\mathsf{deg}}_+(\overline{E}^{\vee})) \leqslant \frac{1}{2} \ln(\mathsf{rk}(E)) \nu(\Omega_\infty),$$

where $\Omega_{\infty} = \{ \omega \in \Omega \, : \, |\cdot|_{\omega} \text{ is archimedean} \}.$

$\overline{E}^{\vee\vee} = \overline{E} \text{ once } \|\cdot\|_{\omega} \text{ is ultrametric for any } \omega \in \Omega \setminus \Omega_{\infty}.$

Higher dimensional geometry

Let $\pi : X \to \text{Spec } K$ be an integral projective *K*-scheme and *L* be a line bundle on *X*.

Metric family

By metric family on *L*, we refer to a family $\varphi = (\varphi_{\omega})_{\omega \in \Omega}$ where φ_{ω} is a continuous metric on L_{ω}^{an} .

For defining an adelic metric, we can not follow the classic approach since no integral model can be considered.

Higher dimensional geometry

Let $\pi : X \to \text{Spec } K$ be an integral projective *K*-scheme and *L* be a line bundle on *X*.

Metric family

By metric family on *L*, we refer to a family $\varphi = (\varphi_{\omega})_{\omega \in \Omega}$ where φ_{ω} is a continuous metric on L_{ω}^{an} .

For defining an adelic metric, we can not follow the classic approach since no integral model can be considered.

Dominancy

Assume that *L* is very ample. We equip $E = H^0(X, L)$ with a hermitian norm family ξ such that (E, ξ) is an adelic vector bundle. Let φ_{ξ} be the family of Fubini-Study metrics on *L*.

• We say that φ is dominated if the function

$$(\omega \in \Omega) \mapsto \sup_{x \in X^{\mathrm{an}}_\omega} \left| \ln rac{| \cdot |_{arphi_\omega}(x)}{| \cdot |_{arphi_{\xi,\omega}}(x)}
ight|$$

is bounded from above by a ν -integrable function.

Higher dimensional geometry

Measurability

We say that a metric family φ is measurable if for any closed point *P* of *X* the norm family $P^*(\varphi)$ on $P^*(L)$ is measurable.

Adelic line bundle

Let *L* be a line bundle on *X* and φ be a metric family on *X*. If there exist very ample line bundles L_1 and L_2 equipped with dominated and measurable metric families φ_1 and φ_2 such that $L \cong L_1 \otimes L_2^{\vee}$ and $\varphi \cong \varphi_1 \otimes \varphi_2^{\vee}$, we say that (L, φ) is an adelic line bundle on *X*.

- Independent of various choices.
- Stable under tensor product and dual.
- Pic(X): group of isomorphism classes of adelic vector bundles on X

Volume function

Linear system

Let (L, φ) be adelic line bundle. Then $(H^0(X, L), (\|\cdot\|_{\varphi_{\omega}})_{\omega \in \Omega})$ is an adelic vector bundle on *S*, denoted by $\pi_*(L, \varphi)$, where

$$\|m{s}\|_{arphi_{\omega}}:=\sup_{x\in X^{\mathrm{an}}_{\omega}}|m{s}|_{arphi_{\omega}}(x).$$

Volume function

Let (L, φ) be an adelic line bundle on *X*. The volume of (L, φ) is define as

$$\widehat{\operatorname{vol}}(L,\varphi) := \limsup_{n \to +\infty} \frac{\widehat{\operatorname{deg}}_+(\pi_*((L,\varphi)^{\otimes n}))}{n^{d+1}/(d+1)!}$$

If $\widehat{\text{vol}}(L, \varphi) > 0$, (L, φ) is said to be big.

Volume function

Linear system

Let (L, φ) be adelic line bundle. Then $(H^0(X, L), (\|\cdot\|_{\varphi_{\omega}})_{\omega \in \Omega})$ is an adelic vector bundle on *S*, denoted by $\pi_*(L, \varphi)$, where

$$\|m{s}\|_{arphi_\omega} := \sup_{x\in X^{ ext{an}}_\omega} |m{s}|_{arphi_\omega}(x).$$

Volume function

Let (L, φ) be an adelic line bundle on *X*. The volume of (L, φ) is define as

$$\widehat{\operatorname{vol}}(L,\varphi) := \limsup_{n \to +\infty} \frac{\widehat{\operatorname{deg}}_+(\pi_*((L,\varphi)^{\otimes n}))}{n^{d+1}/(d+1)!}$$

If $\widehat{\text{vol}}(L, \varphi) > 0$, (L, φ) is said to be big.

- lim sup can be replaced by lim
- convex geometry interpretation
- Brunn-Minkowski inequality
- continuity of volume function

Monograph

(almost) self-contained, very detailed (about 400 pages), available soon.

Monograph

(almost) self-contained, very detailed (about 400 pages), available soon.

Lecture series

Kyoto University, every Tuesday from October 2nd to October 30th 2018, 7 lectures of 1h30

Monograph

(almost) self-contained, very detailed (about 400 pages), available soon.

Lecture series

Kyoto University, every Tuesday from October 2nd to October 30th 2018, 7 lectures of 1h30

Graduate course

Université Paris Diderot, from January to April 2019, 24 lectures of 2 hours.

Further research topics and problems

Fundamental problems

- For a fixed field K, what are proper adelic curve structures on the field?
- Existence of compactification for a non-proper adelic curve.
- Categorical study of adelic curve and adelic vector bundles.

Geometric problems

- Relation between the volume function and Gubler's height (Hilbert-Samuel type theorem).
- Arithmetic intersection theory for projective varieties over an adelic curve. Riemann-Roch.
- Differentiability of the volume function, Bogomolov type of problems, algebraic dynamical system over general fields.