Heights and periodic points for one-parameter families of Hénon maps (Joint work with Liang-Chung Hsia)

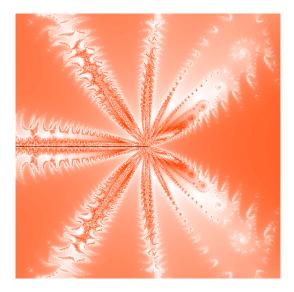
Shu Kawaguchi

Doshisha Univ.

Intercity Seminar on Arakelov Geometry 2018 University of Copenhagen, September 4, 2018

## Plan of the talk

- Background and motivation (surveyal): Variation of Néron–Tate heights for families of elliptic curves after Silverman, Tate, Masser–Zannier, DeMarco–Wang–Ye ...
- **2** From elliptic curves to dynamical systems
- 3 Arithmetic properties of families of Hénon maps:
   Definition of a Hénon map, a height on the parameter space, the set of periodic parameter values, unlikely intersection ...



Drawn by Qfract.

# Part 1 Variation of Néron–Tate heights on elliptic curves

## Variation of Néron–Tate heights

(For simplicity, we consider elliptic curves. For the general case of abelian varieties, see e.g. Call '89, Green '89, Holms-de Jong '15, '17)

# Part 1 Variation of Néron–Tate heights on elliptic curves

## Variation of Néron–Tate heights

(For simplicity, we consider elliptic curves. For the general case of abelian varieties, see e.g. Call '89, Green '89, Holms-de Jong '15, '17)

 $\pi : \mathcal{E} \to B$  is an elliptic surface defined over a number field K, B is a smooth projective curve  $E_t := \pi^{-1}(t)$  is a smooth elliptic curve

except for finitely many  $t \in B(\overline{K})$ .

Define  $B^{\circ} \subseteq B$  to be the maximal Zariski open subset over which  $\pi$  is smooth.

Assume that  $\pi$  has a section  $O: B \to \mathcal{E}$ , which we regard as zero section.

Variation of Néron–Tate heights (continued)  $\mathcal{E} \to B$ : an elliptic surface over a number field Kwith zero section  $O: B \to \mathcal{E}$ 

K is equipped with absolute values satisfying the product formula. So is the function field K(B) of B Variation of Néron–Tate heights (continued)  $\mathcal{E} \to B$ : an elliptic surface over a number field Kwith zero section  $O: B \to \mathcal{E}$ 

K is equipped with absolute values satisfying the product formula. So is the function field K(B) of B

 $\rightsquigarrow$  We have Néron–Tate heights ( $\eta$ : generic point of B)

- $\widehat{h}_{E_t} : E_t(\overline{K}) \to \mathbb{R}_{\geq 0}$  on each fiber  $E_t$  for  $t \in B^{\circ}(\overline{K})$
- $\widehat{h}_{\mathcal{E}_{\eta}}: \mathcal{E}_{\eta}(\overline{K(B)}) \to \mathbb{R}_{\geq 0}$  on the generic fiber  $\mathcal{E}_{\eta}$

Variation of Néron–Tate heights (continued)  $\mathcal{E} \to B$ : an elliptic surface over a number field Kwith zero section  $O: B \to \mathcal{E}$ 

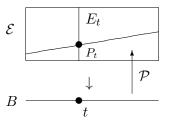
K is equipped with absolute values satisfying the product formula. So is the function field K(B) of B

 $\rightsquigarrow$  We have Néron–Tate heights ( $\eta$ : generic point of B)

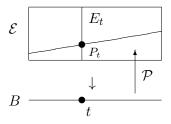
•  $\widehat{h}_{E_t}: E_t(\overline{K}) \to \mathbb{R}_{\geq 0}$  on each fiber  $E_t$  for  $t \in B^{\circ}(\overline{K})$ 

•  $\widehat{h}_{\mathcal{E}_{\eta}}: \mathcal{E}_{\eta}(\overline{K(B)}) \to \mathbb{R}_{\geq 0}$  on the generic fiber  $\mathcal{E}_{\eta}$ 

Let  $\mathcal{P} : B \to \mathcal{E}$  be a section. Set  $P_t := \mathcal{P}(t)$  for  $t \in B^{\circ}(\overline{K})$ How  $\widehat{h}_{E_t}(P_t)$  and  $\widehat{h}_{\mathcal{E}_n}(\mathcal{P}_{\eta})$  are related?



 $\mathcal{E} \to B$ : an elliptic surface over a number field K



# Theorem (Silverman '83, Tate '83) Let $\mathcal{P}: B \to \mathcal{E}$ be a section with $\hat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$ . Let $h_B$ be a height on $B(\overline{K})$ associated to a degree 1 divisor. Then

$$\widehat{h}_{E_t}(P_t) = \widehat{h}_{\mathcal{E}_\eta}(\mathcal{P}_\eta) \, h_B(t) + O(\sqrt{h_B(t)}) \quad \text{ for any } t \in B^{\circ}(\overline{K}).$$

The error term  $O(\sqrt{h_B(t)})$  is replaced by O(1) if  $B = \mathbb{P}^1$ .

Assume  $B = \mathbb{P}^1$ , for simplicity of explanation.  $\mathcal{E} \to \mathbb{P}^1$ : an elliptic surface over a number field K with zero section  $h_{\text{std}} : \mathbb{P}^1(\overline{K}) \to \mathbb{R}_{\geq 0}$  standard logarithmic Weil height

 $\mathcal{P}: \mathbb{P}^1 \to \mathcal{E}$  a section with  $\widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$ 

Assume  $B = \mathbb{P}^1$ , for simplicity of explanation.  $\mathcal{E} \to \mathbb{P}^1$ : an elliptic surface over a number field K with zero section  $h_{\text{std}} : \mathbb{P}^1(\overline{K}) \to \mathbb{R}_{\geq 0}$  standard logarithmic Weil height  $\mathcal{P} : \mathbb{P}^1 \to \mathcal{E}$  a section with  $\hat{h}_{\mathcal{E}_\eta}(\mathcal{P}_\eta) \neq 0$ 

Results of Silverman and Tate assert that

$$\widehat{h}_{E_t}(P_t) = \widehat{h}_{\mathcal{E}_\eta}(\mathcal{P}_\eta) \, h_{\mathrm{std}}(t) + O(1) \quad \text{ for any } t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$$

Assume  $B = \mathbb{P}^1$ , for simplicity of explanation.  $\mathcal{E} \to \mathbb{P}^1$ : an elliptic surface over a number field K with zero section  $h_{\text{std}} : \mathbb{P}^1(\overline{K}) \to \mathbb{R}_{\geq 0}$  standard logarithmic Weil height  $\mathcal{P} : \mathbb{P}^1 \to \mathcal{E}$  a section with  $\hat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$ 

Results of Silverman and Tate assert that

 $\widehat{h}_{E_t}(P_t) = \widehat{h}_{\mathcal{E}_\eta}(\mathcal{P}_\eta) h_{\mathrm{std}}(t) + O(1) \quad \text{ for any } t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$ 

We put  $h_{\mathcal{P}} := \hat{h}_{E_t}(P_t) / \hat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta})$  for  $t \in (\mathbb{P}^1)^{\circ}(\overline{K})$ . Then

$$h_{\mathcal{P}} = h_{\text{std}} + O(1) \quad \text{on } (\mathbb{P}^1)^{\circ}(\overline{K}).$$

Assume  $B = \mathbb{P}^1$ , for simplicity of explanation.  $\mathcal{E} \to \mathbb{P}^1$ : an elliptic surface over a number field K with zero section  $h_{\text{std}} : \mathbb{P}^1(\overline{K}) \to \mathbb{R}_{\geq 0}$  standard logarithmic Weil height  $\mathcal{P} : \mathbb{P}^1 \to \mathcal{E}$  a section with  $\hat{h}_{\mathcal{E}_\eta}(\mathcal{P}_\eta) \neq 0$ 

Results of Silverman and Tate assert that

 $\widehat{h}_{E_t}(P_t) = \widehat{h}_{\mathcal{E}_\eta}(\mathcal{P}_\eta) h_{\mathrm{std}}(t) + O(1) \quad \text{for any } t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$ 

We put  $h_{\mathcal{P}} := \hat{h}_{E_t}(P_t) / \hat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta})$  for  $t \in (\mathbb{P}^1)^{\circ}(\overline{K})$ . Then

$$h_{\mathcal{P}} = h_{\text{std}} + O(1) \quad \text{on } (\mathbb{P}^1)^{\circ}(\overline{K}).$$

Question What if  $t \notin (\mathbb{P}^1)^{\circ}(\overline{K})$ ? (That is, what if  $E_t$  is singular?)

Theorem (DeMarco–Mavraki '17+ based on Silverman '92, '94) Let  $\mathcal{E} \to \mathbb{P}^1$  be an elliptic surface over a number field K with zero section. Let  $\mathcal{P} : \mathbb{P}^1 \to \mathcal{E}$  be a section with  $\hat{h}_{\mathcal{E}_\eta}(\mathcal{P}_\eta) \neq 0$ . Set

$$h_{\mathcal{P}}(t) := \widehat{h}_{E_t}(P_t) / \widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \qquad \text{for } t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$$

Then  $h_{\mathcal{P}}$  is the restriction of a semipositive adelically metrized line bundle  $\overline{\mathcal{L}_{\mathcal{P}}} = (\mathcal{O}_{\mathbb{P}^1}(1), \{\|\cdot\|_v\})$  on  $\mathbb{P}^1$  (in the sense of Zhang).

Theorem (DeMarco–Mavraki '17+ based on Silverman '92, '94) Let  $\mathcal{E} \to \mathbb{P}^1$  be an elliptic surface over a number field K with zero section. Let  $\mathcal{P} : \mathbb{P}^1 \to \mathcal{E}$  be a section with  $\hat{h}_{\mathcal{E}_\eta}(\mathcal{P}_\eta) \neq 0$ . Set

$$h_{\mathcal{P}}(t) := \widehat{h}_{E_t}(P_t) / \widehat{h}_{\mathcal{E}_{\eta}}(\mathcal{P}_{\eta}) \qquad for \ t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$$

Then  $h_{\mathcal{P}}$  is the restriction of a semipositive adelically metrized line bundle  $\overline{\mathcal{L}_{\mathcal{P}}} = (\mathcal{O}_{\mathbb{P}^1}(1), \{\|\cdot\|_v\})$  on  $\mathbb{P}^1$  (in the sense of Zhang).

• Theorem says that  $h_{\mathcal{P}}$  extends "nicely" to  $t \notin (\mathbb{P}^1)^{\circ}(\overline{K})$  (That is, for t with singular  $E_t$ ).

Theorem (DeMarco–Mavraki '17+ based on Silverman '92, '94) Let  $\mathcal{E} \to \mathbb{P}^1$  be an elliptic surface over a number field K with zero section. Let  $\mathcal{P} : \mathbb{P}^1 \to \mathcal{E}$  be a section with  $\widehat{h}_{\mathcal{E}_\eta}(\mathcal{P}_\eta) \neq 0$ . Set

$$h_{\mathcal{P}}(t) := \widehat{h}_{E_t}(P_t) / \widehat{h}_{\mathcal{E}_\eta}(\mathcal{P}_\eta) \quad \text{for } t \in (\mathbb{P}^1)^{\circ}(\overline{K}).$$

Then  $h_{\mathcal{P}}$  is the restriction of a semipositive adelically metrized line bundle  $\overline{\mathcal{L}_{\mathcal{P}}} = (\mathcal{O}_{\mathbb{P}^1}(1), \{\|\cdot\|_v\})$  on  $\mathbb{P}^1$  (in the sense of Zhang).

- Theorem says that  $h_{\mathcal{P}}$  extends "nicely" to  $t \notin (\mathbb{P}^1)^{\circ}(\overline{K})$  (That is, for t with singular  $E_t$ ).
- The base curve need not be  $\mathbb{P}^1$ . DeMarco–Mavraki showed that for any elliptic surface  $\mathcal{E} \to B$  (*B* a smooth projective curve),  $h_{\mathcal{P}}$  is the restriction of a semipositive adelically metrized line bundle on *B*.

## Application to unlikely intersection of Masser–Zannier Let $\mathcal{E} = \{y^2 z = x(x - z)(x - tz)\}$

Legendre family of elliptic curves over  $t \in \mathbb{P}^1$ .

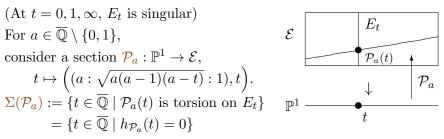
# Application to unlikely intersection of Masser–Zannier Let $\mathcal{E} = \{y^2 z = x(x-z)(x-tz)\}$

Legendre family of elliptic curves over  $t \in \mathbb{P}^1$ .

Note:  $\Sigma(\mathcal{P}_a)$  is an infinite set (Masser–Zannier).

## Application to unlikely intersection of Masser–Zannier Let $\mathcal{E} = \{y^2 z = x(x - z)(x - tz)\}$

Legendre family of elliptic curves over  $t \in \mathbb{P}^1$ .



Note:  $\Sigma(\mathcal{P}_a)$  is an infinite set (Masser–Zannier).

Theorem (Masser–Zannier '08, '10, '12)

Let  $a, b \in \overline{\mathbb{Q}} \setminus \{0, 1\}$ . If there are infinitely many parameter values  $t \in \overline{\mathbb{Q}}$  such that both  $\mathcal{P}_a(t)$  and  $\mathcal{P}_b(t)$  are torsion points on  $E_t$  (i.e., if  $\Sigma(\mathcal{P}_a) \cap \Sigma(\mathcal{P}_b)$  is an infinite set), then a = b.

## Application to unlikely intersection of Masser–Zannier (continued) DeMarco–Wang–Ye '14 give an alternate proof of Masser–Zannier's theorem.

DeMarco–Wang–Ye '14 give an alternate proof of Masser–Zannier's theorem.

• Let  $\mathcal{E} = \{y^2 z = x(x-z)(x-tz)\} \to \mathbb{P}^1$  be the Legendre family.

DeMarco–Wang–Ye '14 give an alternate proof of Masser–Zannier's theorem.

• Let  $\mathcal{E} = \{y^2 z = x(x-z)(x-tz)\} \to \mathbb{P}^1$  be the Legendre family.

• For  $a \in \overline{\mathbb{Q}} \setminus \{0, 1\}$ , the section  $\mathcal{P}_a : \mathbb{P}^1 \to \mathcal{E}$ ,  $t \mapsto \left( (a : \sqrt{a(a-1)(a-t)} : 1), t \right)$  has  $\hat{h}_{\mathcal{E}_\eta}(\mathcal{P}_{a\eta}) \neq 0$ .

DeMarco–Wang–Ye '14 give an alternate proof of Masser–Zannier's theorem.

Let *E* = {*y*<sup>2</sup>*z* = *x*(*x* − *z*)(*x* − *tz*)} → P<sup>1</sup> be the Legendre family.
For *a* ∈ Q \ {0,1}, the section *P<sub>a</sub>* : P<sup>1</sup> → *E*, *t* ↦ ((*a* : √*a*(*a*−1)(*a*−*t*) : 1), *t*) has *h<sub>E<sub>η</sub></sub>*(*P<sub>aη</sub>*) ≠ 0.
Σ(*P<sub>a</sub>*) := {*t* | *P<sub>a</sub>*(*t*) torsion on *E<sub>t</sub>*} = {*t* | *h<sub>Pa</sub>*(*t*) = 0}.

DeMarco–Wang–Ye '14 give an alternate proof of Masser–Zannier's theorem.

- Let  $\mathcal{E} = \{y^2 z = x(x-z)(x-tz)\} \to \mathbb{P}^1$  be the Legendre family.
- For a ∈ Q \ {0,1}, the section P<sub>a</sub> : P<sup>1</sup> → E, t ↦ ((a : √a(a-1)(a-t):1), t) has h
  <sub>E<sub>η</sub></sub>(P<sub>aη</sub>) ≠ 0.
  Σ(P<sub>a</sub>) := {t | P<sub>a</sub>(t) torsion on E<sub>t</sub>} = {t | h<sub>P<sub>a</sub></sub>(t) = 0}.
- Since  $h_{\mathcal{P}_a} = h_{\overline{\mathcal{L}_{\mathcal{P}_a}}}$  with semipositive adelically metrized line bundle  $\overline{\mathcal{L}_{\mathcal{P}_a}}$ , one can use the equidistribution theorem (such as Yuan. In [DeMarco–Wang–Ye], they use Baker–Rumely '06.).

DeMarco–Wang–Ye '14 give an alternate proof of Masser–Zannier's theorem.

- Let  $\mathcal{E} = \{y^2 z = x(x-z)(x-tz)\} \to \mathbb{P}^1$  be the Legendre family.
- For a ∈ Q \ {0,1}, the section P<sub>a</sub> : P<sup>1</sup> → E, t ↦ ((a : √a(a-1)(a-t):1),t) has h<sub>E<sub>η</sub></sub>(P<sub>aη</sub>) ≠ 0.
  Σ(P<sub>a</sub>) := {t | P<sub>a</sub>(t) torsion on E<sub>t</sub>} = {t | h<sub>P<sub>a</sub></sub>(t) = 0}.
- Since  $h_{\mathcal{P}_a} = h_{\overline{\mathcal{L}_{\mathcal{P}_a}}}$  with semipositive adelically metrized line bundle  $\overline{\mathcal{L}_{\mathcal{P}_a}}$ , one can use the equidistribution theorem (such as Yuan. In [DeMarco–Wang–Ye], they use Baker–Rumely '06.).
- If  $|\Sigma(\mathcal{P}_a) \cap \Sigma(\mathcal{P}_b)| = \infty$ , then equidistribution theorem implies that  $c_1(\overline{\mathcal{L}_{\mathcal{P}_a}})_v = c_1(\overline{\mathcal{L}_{\mathcal{P}_b}})_v$  for any  $v \in M_K$ .

DeMarco–Wang–Ye '14 give an alternate proof of Masser–Zannier's theorem.

- Let  $\mathcal{E} = \{y^2 z = x(x-z)(x-tz)\} \to \mathbb{P}^1$  be the Legendre family.
- For a ∈ Q \ {0,1}, the section P<sub>a</sub> : P<sup>1</sup> → E, t ↦ ((a : √a(a-1)(a-t):1),t) has h<sub>E<sub>η</sub></sub>(P<sub>aη</sub>) ≠ 0.
  Σ(P<sub>a</sub>) := {t | P<sub>a</sub>(t) torsion on E<sub>t</sub>} = {t | h<sub>P<sub>a</sub></sub>(t) = 0}.
- Since  $h_{\mathcal{P}_a} = h_{\overline{\mathcal{L}_{\mathcal{P}_a}}}$  with semipositive adelically metrized line bundle  $\overline{\mathcal{L}_{\mathcal{P}_a}}$ , one can use the equidistribution theorem (such as Yuan. In [DeMarco-Wang-Ye], they use Baker-Rumely '06.).
- If  $|\Sigma(\mathcal{P}_a) \cap \Sigma(\mathcal{P}_b)| = \infty$ , then equidistribution theorem implies that  $c_1(\overline{\mathcal{L}_{\mathcal{P}_a}})_v = c_1(\overline{\mathcal{L}_{\mathcal{P}_b}})_v$  for any  $v \in M_K$ .
- Then  $h_{\overline{\mathcal{L}_{\mathcal{P}_a}}} = h_{\overline{\mathcal{L}_{\mathcal{P}_b}}}, \Sigma(\mathcal{P}_a) = \Sigma(\mathcal{P}_b)$ , and (with more arguments) a = b.

## Plan of the talk

- Background and motivation (surveyal): Variation of Néron–Tate heights for families of elliptic curves after Silverman, Tate, Masser–Zannier, DeMarco–Wang–Ye ...
- **2** From elliptic curves to dynamical systems
- 3 Arithmetic properties of families of Hénon maps:
   Definition of a Hénon map, a height on the parameter space, the set of periodic parameter values, unlikely intersection ...

# Part 2 From elliptic curves to dynamical systems

#### **Canonical heights**

 ${\it E}$  is an elliptic curve over a number field  ${\it K}$ 

 $L = \mathcal{O}_E([0]), \quad h_L$  is any height function associated to L[2]:  $E \to E$  twice multiplication map. Note that  $[2]^*(L) \cong L^{\otimes 4}.$ Néron–Tate height  $\hat{h}_E : E(\overline{K}) \to \mathbb{R}_{\geq 0}$  is defined by

$$\widehat{h}_E(P) = \lim_{n \to \infty} \frac{1}{4^n} h_L([2]^n P)$$

# Part 2 From elliptic curves to dynamical systems

#### **Canonical heights**

E is an elliptic curve over a number field K

 $L = \mathcal{O}_E([0]), \quad h_L$  is any height function associated to L[2]:  $E \to E$  twice multiplication map. Note that  $[2]^*(L) \cong L^{\otimes 4}.$ Néron–Tate height  $\hat{h}_E : E(\overline{K}) \to \mathbb{R}_{\geq 0}$  is defined by

$$\widehat{h}_E(P) = \lim_{n \to \infty} \frac{1}{4^n} h_L([2]^n P)$$

In place of  $(E, [2], \mathcal{O}_E([0]))$ , this construction of a height is generalized to the case (X, f, L)

(continued  $\dots )$ 

## Canonical heights (continued)

 $\boldsymbol{X}$  is a projective variety over a number field  $\boldsymbol{K}$ 

L is an ample line bundle over X

 $h_L$  is any height function associated to L

 $f \colon X \to X$  a morphism

Assume that  $f^*(L) \cong L^{\otimes d}$  for some d > 1

Such a triple (X, f, L) is called a polarized dynamical system

## Canonical heights (continued)

X is a projective variety over a number field KL is an ample line bundle over X

 $h_L$  is any height function associated to L

 $f \colon X \to X$  a morphism

Assume that  $f^*(L) \cong L^{\otimes d}$  for some d > 1

Such a triple (X, f, L) is called a polarized dynamical system

Canonical height  $\hat{h}_f: X(\overline{K}) \to \mathbb{R}_{\geq 0}$  is defined by

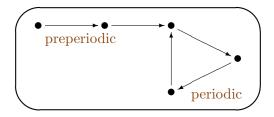
$$\widehat{h}_f(P) = \lim_{n \to \infty} \frac{1}{d^n} h_L(f^n P)$$

(Call–Silverman '93, Zhang '95)

Néron–Tate height is when  $(X, f, L) = (E, [2], \mathcal{O}_E([0])).$ 

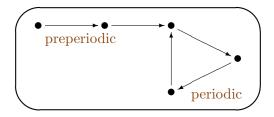
#### Torsion points, preperiodic points

 $f: X \to X$  a morphism over a field KA point  $P \in X(\overline{K})$  is periodic if  $f^n(P) = P$  for some  $n \ge 1$  $P \in X(\overline{K})$  is preperiodic if  $f^m(P)$  is periodic for some  $m \ge 1$ 



#### Torsion points, preperiodic points

 $f: X \to X$  a morphism over a field KA point  $P \in X(\overline{K})$  is periodic if  $f^n(P) = P$  for some  $n \ge 1$  $P \in X(\overline{K})$  is preperiodic if  $f^m(P)$  is periodic for some  $m \ge 1$ 



For an elliptic curve E, it is easy to see that a point  $P \in E(\overline{K})$  is torsion if and only if P is preperiodic under [2].

Torsion points, preperiodic points (continued) For an elliptic curve E over a number field K

 $\{\text{torsion point}\} = \{\text{preperiodic point under } [2]\} \\ = \{P \in E(\overline{K}) \mid \hat{h}_E(P) = 0\}$ 

₩

Torsion points, preperiodic points (continued) For an elliptic curve E over a number field K

{torsion point} = {preperiodic point under [2]}  
= {
$$P \in E(\overline{K}) \mid \hat{h}_E(P) = 0$$
}

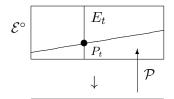
#### ∜

In a polarized dynamical system (X, f, L), in place of torsion points, we consider

{preperiodic point under 
$$f$$
} = { $P \in X(\overline{K}) \mid \hat{h}_f(P) = 0$ }

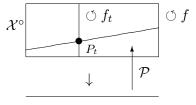
(The equality follows from Northcott's finiteness theorem.)

## Families (continued)



 $B^{\circ}$  (parameter space)

elliptic surface torsion point  $\Sigma(\mathcal{P}) = \{t \mid P_t \text{ is} \\ \text{torsion on } E_t\}$ Néron–Tate height

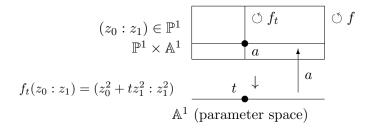


 $B^{\circ}$  (parameter space)

polarized dynamical system preperiodic point  $\Sigma(\mathcal{P}) = \{t \mid P_t \text{ is} \\ \text{preperiodic under } f_t\}$ canonical height

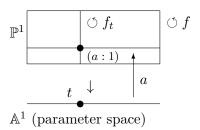
Baker–DeMarco obtained the first result in a dynamical setting.

$$\mathbb{P}^{1} \times \mathbb{A}^{1} \to \mathbb{A}^{1}, \quad ((z_{0}:z_{1}),t) \mapsto t$$
  
$$f: \mathbb{P}^{1} \times \mathbb{A}^{1} \to \mathbb{P}^{1} \times \mathbb{A}^{1}, \quad ((z_{0}:z_{1}),t) \mapsto ((z_{0}^{2}+tz_{1}^{2}:z_{1}^{2}),t)$$
  
a constant section  $a: \mathbb{A}^{1} \to \mathbb{P}^{1} \times \mathbb{A}^{1}, \quad t \mapsto ((a:1),t)$   
$$\Sigma(a) := \{t \in \mathbb{A}^{1} \mid (a:1) \text{ is preperiodic under } f_{t}\}$$

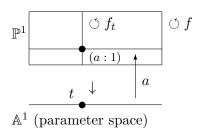


 $f_t(z_0:z_1) = (z_0^2 + tz_1^2:z_1^2)$  $\Sigma(a) = \{t \in \mathbb{A}^1(\mathbb{C}) | (a:1) \text{ is preperiodic under } f_t\}$ 

Note:  $\Sigma(a)$  is an infinite set.



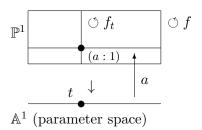
# Families (continued) $f_t(z_0:z_1) = (z_0^2 + tz_1^2:z_1^2)$ $\Sigma(a) = \{t \in \mathbb{A}^1(\mathbb{C}) \mid (a:1) \text{ is preperiodic under } f_t\}$ Note: $\Sigma(a)$ is an infinite set.



# Theorem (Baker–DeMarco '11)

Let  $f_t(z) = z^2 + t$ . Let  $a, b \in \mathbb{C}$ . Suppose that there exist infinitely many  $t \in \mathbb{C}$  such that a and b are both preperiodic under  $f_t$ . Then  $a^2 = b^2$ .

# Families (continued) $f_t(z_0:z_1) = (z_0^2 + tz_1^2:z_1^2)$ $\Sigma(a) = \{t \in \mathbb{A}^1(\mathbb{C}) \mid (a:1) \text{ is preperiodic under } f_t\}$ Note: $\Sigma(a)$ is an infinite set.



# Theorem (Baker–DeMarco '11)

Let  $f_t(z) = z^2 + t$ . Let  $a, b \in \mathbb{C}$ . Suppose that there exist infinitely many  $t \in \mathbb{C}$  such that a and b are both preperiodic under  $f_t$ . Then  $a^2 = b^2$ .

• This answered a question of Zannier. The assumption says that  $\#(\Sigma(a) \cap \Sigma(b)) = \infty$ . Using equidistribution theorem, they show  $\Sigma(a) = \Sigma(b)$ . Properties of the Bötthcher coordinate then imply  $a^2 = b^2$ .

More comments on Baker–DeMarco's theorem

- Further generalizations (in relation to the dynamical Pink–Zilber conjecture) have been obtained by Baker–DeMarco, Ghioca–Hsia–Tucker, Favre–Gauthier, DeMarco–Wang–Ye ...
- Families of rational maps of P<sup>1</sup> have been mostly studied. Our talk is about families of higher-dimensional maps.

# Plan of the talk

- Background and motivation (surveyal): Variation of Néron–Tate heights for families of elliptic curves after Silverman, Tate, Masser–Zannier, DeMarco–Wang–Ye ...
- **2** From elliptic curves to dynamical systems
- 3 Arithmetic properties of families of Hénon maps:
   Definition of a Hénon map, a height on the parameter space, the set of periodic parameter values, unlikely intersection ...

# Part 3 Arithmetic properties of families of Hénon maps

#### Hénon maps

 $\mathbb{A}^2$ : affine plane

A Hénon map over a field K is an automorphism of the form

$$H : \mathbb{A}^2 \to \mathbb{A}^2, \quad H(x, y) = (\delta y + f(x), x)$$

for some  $\delta \in K \setminus \{0\}$  and  $f(x) \in K[x]$  with  $d := \deg(f) \ge 2$ .

The inverse is given by

$$H^{-1}: \mathbb{A}^2 \to \mathbb{A}^2, \quad H^{-1}(x, y) = \left(y, \frac{1}{\delta}(x - f(y))\right)$$

Note: H extends to a birational map  $H : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ , but not an isomorphism.

Some remarks on Hénon maps

• Hénon '76 showed that a Hénon map has a strange attractor.

Some remarks on Hénon maps

- Hénon '76 showed that a Hénon map has a strange attractor.
- If  $\delta$  in  $H(x, y) = (\delta y + f(x), x)$  is very small (nearly 0), then the map looks like

$$(x,y) \mapsto (f(x),x) \mapsto (f^2(x),f(x)) \mapsto \dots$$

So, Hénon maps are more complicated than one-variable polynomial maps.

Some remarks on Hénon maps

- Hénon '76 showed that a Hénon map has a strange attractor.
- If  $\delta$  in  $H(x, y) = (\delta y + f(x), x)$  is very small (nearly 0), then the map looks like

$$(x,y) \mapsto (f(x),x) \mapsto (f^2(x),f(x)) \mapsto \dots$$

So, Hénon maps are more complicated than one-variable polynomial maps.

Friedland-Milnor '89 showed that any automorphism F : A<sup>2</sup> → A<sup>2</sup> over C is, up to conjugacy of Aut(C<sup>2</sup>), either triangularizable or the composition of Hénon maps. (Dynamically, triangularizable maps are not interesting.) So, the class of Hénon maps consists of a fundamental class of plane automorphisms.

 Hénon maps over C are deeply studied in Bedford–Smilie '91, Fornæss–Sibony '92, Hubbard –Oberste-Vorth '94 among from the vast literature.

- Hénon maps over C are deeply studied in Bedford–Smilie '91, Fornæss–Sibony '92, Hubbard –Oberste-Vorth '94 among from the vast literature.
- Arithmetic properties of Hénon maps are also studied. To my best knowledge, they are first studied by Silverman '94.

- Hénon maps over C are deeply studied in Bedford–Smilie '91, Fornæss–Sibony '92, Hubbard –Oberste-Vorth '94 among from the vast literature.
- Arithmetic properties of Hénon maps are also studied. To my best knowledge, they are first studied by Silverman '94.
- For a Hénon map  $H(x, y) = (y, \delta x + f(x))$ , up to conjugacy of  $\operatorname{Aut}(\overline{K})$ , we may assume that f(x) is monic.

#### Canonical heights for Hénon maps

Hénon maps are not polarized dynamical systems, but one can define canonical heights for Hénon maps

•  $\Omega:$  an algebraically closed field complete with respect to an absolute value  $|\cdot|$ 

• 
$$||(a_1, \ldots, a_n)|| := \max_i \{|a_i|\}$$

• 
$$\log^+(r) := \log \max\{r, 1\}$$
 for  $r \in \mathbb{R}$ 

•  $H \colon \mathbb{A}^2 \to \mathbb{A}^2$  a Hénon map over  $\Omega$ ,  $P \in \mathbb{A}^2(\Omega)$ 

# Definition (Green functions on $\mathbb{A}^2(\Omega)$ )

$$G_{H}^{+}(P) := \lim_{n \to +\infty} \frac{1}{d^{n}} \log^{+} \|H^{n}(P)\|, \ G_{H}^{-}(P) := \lim_{n \to +\infty} \frac{1}{d^{n}} \log^{+} \|H^{-n}(P)\|$$
$$G_{H}(P) := \max\{G_{H}^{+}(P), G_{H}^{-}(P)\}$$

Canonical heights for Hénon maps (continued)  $H: \mathbb{A}^2 \to \mathbb{A}^2$  a Hénon map over a number field KFor each place  $v \in M_K$  with absolute value  $|\cdot|_v$ ,  $K_v$ : completion of K with respect to  $|\cdot|_v$  $\mathbb{K}_v$ : completion of an algebraic closure of  $K_v$ 

We have the v-adic Green function

$$G_{H,v} := \max\{G_{H,v}^+, G_{H,v}^-\} : \mathbb{A}^2(\mathbb{K}_v) \to \mathbb{R}_{\geq 0}$$

Definition (canonical height)

$$\widetilde{h}_H \colon \mathbb{A}^2(\overline{K}) \to \mathbb{R}_{\geq 0}, \quad \widetilde{h}_H(P) := \sum_{v \in M_K} n_v G_{H,v}(P)$$

Here  $n_v$  is the usual normalizing constant. For example, if  $p \mid v$ , then  $n_v = [K_v : \mathbb{Q}_p]/[K : \mathbb{Q}]$ . Canonical heights for Hénon maps (continued)

 $H:\mathbb{A}^2\to\mathbb{A}^2$ : a Hénon map of degree  $d\geq 2$  over a number field K.

#### Canonical heights for Hénon maps (continued)

 $H:\mathbb{A}^2\to\mathbb{A}^2:$  a Hénon map of degree  $d\geq 2$  over a number field K.  $\leadsto$  We have defined

- $G_{H,v} \colon \mathbb{A}^2(\mathbb{K}_v) \to \mathbb{R}_{\geq 0}$  (v-adic Green function)  $G_{H,v}(P) := \max\left\{\lim \frac{1}{d^n} \log^+ \|H^n(P)\|, \lim \frac{1}{d^n} \log^+ \|H^{-n}(P)\|\right\}$
- When K<sub>v</sub> = C, the Green function is extremely useful in Bedford-Smilie '91, Farnæss-Sibony '92, Hubbard-Oberste-Vorth '94.
- $\widetilde{h}_H \colon \mathbb{A}^2(\overline{K}) \to \mathbb{R}_{\geq 0}$  (canonical height),  $\widetilde{h}_H(P) := \sum_{v \in M_K} n_v G_{H,v}$

#### Canonical heights for Hénon maps (continued)

 $H:\mathbb{A}^2\to\mathbb{A}^2:$  a Hénon map of degree  $d\geq 2$  over a number field K.  $\leadsto$  We have defined

- $G_{H,v} \colon \mathbb{A}^2(\mathbb{K}_v) \to \mathbb{R}_{\geq 0}$  (v-adic Green function)  $G_{H,v}(P) := \max\left\{\lim \frac{1}{d^n} \log^+ \|H^n(P)\|, \lim \frac{1}{d^n} \log^+ \|H^{-n}(P)\|\right\}$
- When K<sub>v</sub> = C, the Green function is extremely useful in Bedford– Smilie '91, Farnæss–Sibony '92, Hubbard–Oberste-Vorth '94.
   h<sub>H</sub>: A<sup>2</sup>(K) → ℝ<sub>>0</sub> (canonical height), h<sub>H</sub>(P) := ∑<sub>v∈MK</sub> n<sub>v</sub>G<sub>H,v</sub>

Theorem (K- '06, '13)

- **1** The limits defining  $G_{H,v}$  exist for all  $v \in M_K$ .
- (2)  $\widetilde{h}_H = h_{\text{std}} + O(1) \text{ on } \mathbb{A}^2(\overline{K})$
- **3** {periodic point under H} = { $P \in \mathbb{A}^2(\overline{K}) \mid \widetilde{h}_H(P) = 0$ }

Note: Hénon maps are automorphisms, so preperiodic = periodic.

## Families (our setting)

$$K \text{ a number field, } \delta \in K \setminus \{0\},$$

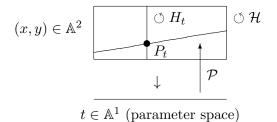
$$f_t(x) \in K[t, x] \text{ monic in } x, \text{ degree } d \ge 2 \text{ in } x$$

$$\mathbb{A}^2 \times \mathbb{A}^1 \to \mathbb{A}^1, \quad ((x, y), t) \mapsto t$$

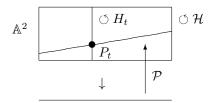
$$\mathcal{H} : \mathbb{A}^2 \times \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1, \quad ((x, y), t) \mapsto ((\delta y + f_t(x), x), t)$$

$$\text{ a section } \mathcal{P} : \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1, \quad t \mapsto ((a(t), b(t)), t)$$

$$\Sigma(\mathcal{P}) := \{t \in \mathbb{A}^1(\overline{K}) \mid P_t = (a(t), b(t)) \text{ is periodic under } H_t\}$$

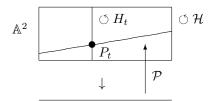


**Families (continued)** *K*: a number field



 $t \in \mathbb{A}^1$  (parameter space)

**Families (continued)** *K*: a number field



 $t \in \mathbb{A}^1$  (parameter space)

 $\rightsquigarrow$  We have canonical heights  $(\eta: \text{ generic point of } \mathbb{A}^1)$ 

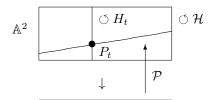
- $\widetilde{h}_{H_t} : \mathbb{A}^2(\overline{K}) \to \mathbb{R}_{\geq 0}$  for each  $t \in \mathbb{A}^1(\overline{K})$
- $\widetilde{h}_{\mathcal{H}_{\eta}} : \mathbb{A}^2(\overline{K})(\overline{K(t)}) \to \mathbb{R}_{\geq 0}$  on the generic fiber  $\mathbb{A}_{\eta}^2$

Let  $\mathcal{P}: \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1$  be a section with  $\widetilde{h}_{\mathcal{H}_\eta}(\mathcal{P}_\eta) \neq 0$ . Set

$$h_{\mathcal{P}}(t) := \widetilde{h}_{H_t}(P_t) / \widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}).$$

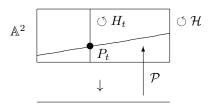
Question 1 Is  $h_{\mathcal{P}} : \mathbb{A}^1(\overline{K}) \to \mathbb{R}$  a "nice" height function?

K: a number field  $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$ 



 $t \in \mathbb{A}^1$  (parameter space)

K: a number field  $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$ 



 $t \in \mathbb{A}^1$  (parameter space)

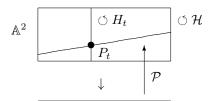
# Theorem (Hsia–K)

 $h_{\mathcal{P}}$  is the restriction of the height function associated to a semipositive adelically metrized line bundle  $(\mathcal{O}_{\mathbb{P}^1}(1), \{\|\cdot\|_v\})$  on  $\mathbb{P}^1$  (in the sense of Zhang).

Remark

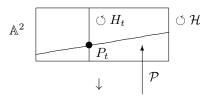
Ingram '14 showed a Silverman–Tate type estimate  $\tilde{h}_{H_t} = \tilde{h}_{\mathcal{H}_\eta}(\mathcal{P}_\eta)h_{\text{std}} + O(1) \text{ on } \mathbb{A}^1(\overline{K}).$  (His result is more general, and the base curve need not be  $\mathbb{P}^1$ .)

K: a number field $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$  $v \in M_{K}$ 



 $t \in \mathbb{A}^1$  (parameter space)

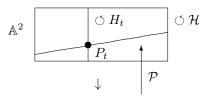
K: a number field  $\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0$  $v \in M_K$ 



 $t \in \mathbb{A}^1$  (parameter space)

$$G_{\mathcal{P},v} \colon \mathbb{A}^{1}(\mathbb{K}_{v}) \to \mathbb{R}_{\geq 0}, \qquad G_{\mathcal{P},v}(t) := G_{H_{t},v}(P_{t})$$
$$\mathcal{K}_{\mathcal{P},v} := \{t \in \mathbb{A}^{1}(\mathbb{K}_{v}) \mid \{H^{n}(P_{t})\}_{n \in \mathbb{Z}} \text{ is bounded}\}$$
$$\mathcal{W}_{\mathcal{P},v} := \{t \in \mathbb{A}^{1}(\mathbb{K}_{v}) \mid \lim_{n \to +\infty} \|(H^{n}(P_{t}), H^{-n}(P_{t}))\| = +\infty\}$$

$$\begin{split} &K: \text{ a number field} \\ &\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \neq 0 \\ &v \in M_{K} \end{split}$$



 $t \in \mathbb{A}^1$  (parameter space)

 $G_{\mathcal{P},v} \colon \mathbb{A}^{1}(\mathbb{K}_{v}) \to \mathbb{R}_{\geq 0}, \qquad G_{\mathcal{P},v}(t) := G_{H_{t},v}(P_{t})$  $\mathcal{K}_{\mathcal{P},v} := \{t \in \mathbb{A}^{1}(\mathbb{K}_{v}) \mid \{H^{n}(P_{t})\}_{n \in \mathbb{Z}} \text{ is bounded}\}$  $\mathcal{W}_{\mathcal{P},v} := \{t \in \mathbb{A}^{1}(\mathbb{K}_{v}) \mid \lim_{n \to +\infty} \|(H^{n}(P_{t}), H^{-n}(P_{t}))\| = +\infty\}$ Proposition (Hsia–K)

$$h_{\mathcal{P}} = c \sum_{v \in M_K} n_v G_{\mathcal{P},v} \text{ with } c := \widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \in \mathbb{Q}_{>0}.$$

$$\mathcal{K}_{\mathcal{P},v} = \{ t \in \mathbb{A}^1(\mathbb{K}_v) \mid G_{\mathcal{P},v}(t) = 0 \}$$

$$\mathbf{3} \ \mathbb{A}^1(\mathbb{K}_v) = \mathcal{K}_{\mathcal{P},v} \amalg \mathcal{W}_{\mathcal{P},v}$$

30 / 40

#### Example

 $\mathcal{H}=(H_t)_t\colon \mathbb{A}^2\to \mathbb{A}^2, \quad (x,y)\mapsto (y+x^2+t,x)$ 

(family of quadratic Hénon maps parametrized by t)

 $\mathcal{P}_{(0,0)} : \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1, t \mapsto ((0,0),t) \text{ a constant family of initial points} \\ \mathcal{K}_{(0,0),\mathbb{C}} := \{t \in \mathbb{C} \mid \{H_t^n((0,0))\}_{n \in \mathbb{Z}} \text{ is bounded}\}$ 

#### Example

 $\mathcal{H} = (H_t)_t \colon \mathbb{A}^2 \to \mathbb{A}^2, \quad (x, y) \mapsto (y + x^2 + t, x)$ 

(family of quadratic Hénon maps parametrized by t)

 $\mathcal{P}_{(0,0)} : \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1, t \mapsto ((0,0),t) \text{ a constant family of initial points} \\ \mathcal{K}_{(0,0),\mathbb{C}} := \{t \in \mathbb{C} \mid \{H_t^n((0,0))\}_{n \in \mathbb{Z}} \text{ is bounded}\}$ 

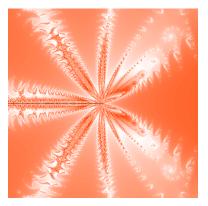
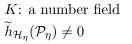
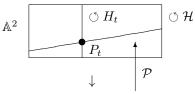


Figure:  $|\text{Re}(t)| \le 0.1$ ,  $|\text{Im}(t)| \le 0.1$ 







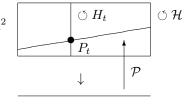
 $t \in \mathbb{A}^1$  (parameter space)

 $\Sigma(\mathcal{P}) := \{ t \in \mathbb{A}^1(\overline{K}) \mid P_t \text{ is periodic under } H_t \}$ 

Here, we have a phenomenon that was not observed in families of one-dimensional dynamics.

 $\Sigma(\mathcal{P})$  may not be an infinite set.

**Result on infiniteness of**  $\Sigma(\mathcal{P})$  K a field (of any characteristic)  $\mathcal{H}(x,y) = (\delta y + f_t(x), x)$   $\mathbb{A}^2$   $\Sigma(\mathcal{P}) = \{t \in \mathbb{A}^1(\overline{K})$  $\mid P_t \text{ is periodic under } H_t\}$ 



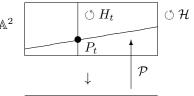
 $t \in \mathbb{A}^1$  (parameter space)

Inspired by Dujardin–Favre's result on the dynamical Mordell–Lang conjecture for plane automorphisms, we consider a reversible Hénon map. Thus we assume that  $\delta = \pm 1$  and that, if  $\delta = 1$ , then  $f_t(x)$  is an even polynomial in x. Then, via the involution  $\iota: (x, y) \mapsto (-\delta y, -\delta x)$ , we have

$$\iota \circ \mathcal{H} \circ \iota = \mathcal{H}^{-1}$$

Further  $\iota$  has the fixed curve  $C = \{x + \delta y = 0\}$  in  $\mathbb{A}^2$ .

**Result on infiniteness of**  $\Sigma(\mathcal{P})$  (continued) K a field (of any characteristic)  $\mathcal{H}(x,y) = (\delta y + f_t(x), x)$   $\Sigma(\mathcal{P}) = \{t \in \mathbb{A}^1(\overline{K})$  $| P_t \text{ is periodic under } H_t\}$ 



 $t \in \mathbb{A}^1$  (parameter space)

# Theorem (Hsia-K)

We assume that  $\delta = \pm 1$  and that, if  $\delta = 1$ , then  $f_t(x)$  is an even polynomial in x. If the family of initial points  $\mathcal{P} = (a(t), b(t))$  lie on the fixed curve of the involution  $\iota: (x, y) \mapsto (-\delta y, -\delta x)$ , i.e.,  $a(t) + \delta b(t) = 0$ , then  $\Sigma(\mathcal{P})$  is an infinite set.

# Example

Let  $\mathcal{H}(x,y) = (y + x^2 + t, x)$ . Then, for any  $a \in K$ ,  $|\Sigma((a, -a))| = \infty$ .

# Result on finiteness/emptyness of $\Sigma(\mathcal{P})$

As a complimentary result, we point out that  $\Sigma(\mathcal{P})$  can be the empty set.

# Proposition (Hsia-K)

We consider the family of quadratic Hénon maps over  $\mathbb C$ 

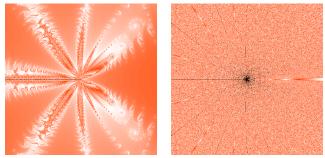
$$\mathcal{H}(x,y) = (y + x^2 + t, x).$$

Let  $b \in \mathbb{C}$ , and assume that  $b \notin \overline{\mathbb{Z}}$ . Then

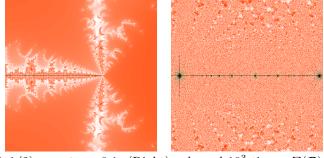
 $\Sigma((0,b)) := \{t \in \mathbb{A}^1(\overline{K}) \mid (0,b) \text{ is periodic under } H_t\} = \emptyset.$ 

# Example

We have  $\Sigma((0, 1/2)) = \emptyset$ , while  $|\Sigma((a, -a))| = \infty$  for any  $a \in \mathbb{C}$ .



 $\mathcal{P} = (0,0)$  near t = 0. (Right) enlarged  $10^3$  times.  $|\Sigma(\mathcal{P})| = \infty$ 

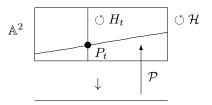


 $\mathcal{P}=(0,1/2)$  near t=-0.1. (Right) enlarged  $10^3$  times.  $\Sigma(\mathcal{P})=\emptyset$ 

# Unlikely intersection

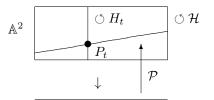
K: a number field  $\Sigma(\mathcal{P}) = \{t \in \mathbb{A}^1(\overline{K}) \\ | P_t \text{ is periodic under } H_t\}$ We have instances

that  $\Sigma(\mathcal{P})$  is infinite.



 $t \in \mathbb{A}^1$  (parameter space)

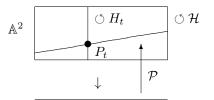
# Unlikely intersection K: a number field $\Sigma(\mathcal{P}) = \{t \in \mathbb{A}^1(\overline{K}) \mid P_t \text{ is periodic under } H_t\}$ We have instances that $\Sigma(\mathcal{P})$ is infinite.



 $t \in \mathbb{A}^1$  (parameter space)

Let  $\mathcal{Q}: \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1$  be another section with  $\widetilde{h}_{\mathcal{H}_n}(\mathcal{Q}_n) \neq 0$ .

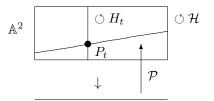
# Unlikely intersection K: a number field $\Sigma(\mathcal{P}) = \{t \in \mathbb{A}^1(\overline{K}) | P_t \text{ is periodic under } H_t\}$ We have instances that $\Sigma(\mathcal{P})$ is infinite.



 $t \in \mathbb{A}^1$  (parameter space)

Let  $\mathcal{Q} : \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1$  be another section with  $\tilde{h}_{\mathcal{H}_\eta}(\mathcal{Q}_\eta) \neq 0$ . We would like to consider when there are infinitely many parameter values t such that both  $P_t$  and  $Q_t$  are periodic under  $H_t$ .

# Unlikely intersection K: a number field $\Sigma(\mathcal{P}) = \{t \in \mathbb{A}^1(\overline{K}) \mid P_t \text{ is periodic under } H_t\}$ We have instances that $\Sigma(\mathcal{P})$ is infinite.



 $t \in \mathbb{A}^1$  (parameter space)

Let  $Q : \mathbb{A}^1 \to \mathbb{A}^2 \times \mathbb{A}^1$  be another section with  $h_{\mathcal{H}_\eta}(Q_\eta) \neq 0$ . We would like to consider when there are infinitely many parameter values t such that both  $P_t$  and  $Q_t$  are periodic under  $H_t$ .

Recall that we have shown

h<sub>P</sub>(t) := h<sub>H<sub>t</sub></sub>(P<sub>t</sub>)/h<sub>H<sub>η</sub></sub>(P<sub>η</sub>) is the restriction of the semipositive adelically metrized line bundle *L<sub>P</sub>* := (O<sub>P1</sub>(1), {|| · ||}<sub>v</sub>).
Σ(P) = {t ∈ A<sup>1</sup>(K) | h<sub>P</sub>(t) = 0}.

$$\begin{split} h_{\mathcal{P}} \colon \mathbb{A}^{1}(\overline{K}) \to \mathbb{R}_{\geq 0} \text{ defined by } h_{\mathcal{P}}(t) &:= \widetilde{h}_{H_{t}}(P_{t})/\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) \\ \text{We have } h_{\mathcal{P}} = c \sum_{v \in M_{K}} n_{v} G_{\mathcal{P},v} \text{ with } c = 1/\widetilde{h}_{\mathcal{H}_{\eta}}(\mathcal{P}_{\eta}) > 0 \\ \Sigma(\mathcal{P}) &:= \{t \in \mathbb{A}^{1}(\overline{K}) \mid P_{t} \text{ is periodic under } H_{t}\} \\ &= \{t \in \mathbb{A}^{1}(\overline{K}) \mid h_{\mathcal{P}}(t) = 0\} \end{split}$$

Theorem (Hsia–K)

Assume that  $\Sigma(\mathcal{P})$  and  $\Sigma(\mathcal{Q})$  are infinite. Then the following are equivalent.

Σ(P) ∩ Σ(Q) is infinite. Namely, there are infinitely many periodic values t such that P<sub>t</sub> and Q<sub>t</sub> are both periodic under H<sub>t</sub>.

 $(\mathcal{P}) = \Sigma(\mathcal{Q})$ 

**3** 
$$G_{\mathcal{P},v} = G_{\mathcal{Q},v}$$
 for all  $v \in M_K$ .

Proof uses Yuan's equidistribution theorem. (Or, as the parameter space is 1-dimensional, so we can also use equidistribution theorem due to Autisser, Thuillier, Chambert-Loir, Baker–Rumely, Favre–Rivera-Letlier ...).

Proof uses Yuan's equidistribution theorem. (Or, as the parameter space is 1-dimensional, so we can also use equidistribution theorem due to Autisser, Thuillier, Chambert-Loir, Baker–Rumely, Favre–Rivera-Letlier ...).

Indeed, suppose that  $\Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$  is infinite.

Let  $\{x_n\}_{n\geq 1}$  be a sequence of distinct points with  $\{x_n\} \subseteq \Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$ .

Proof uses Yuan's equidistribution theorem. (Or, as the parameter space is 1-dimensional, so we can also use equidistribution theorem due to Autisser, Thuillier, Chambert-Loir, Baker–Rumely, Favre–Rivera-Letlier ...).

Indeed, suppose that  $\Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$  is infinite.

Let  $\{x_n\}_{n\geq 1}$  be a sequence of distinct points with  $\{x_n\} \subseteq \Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$ . Since  $\{x_n\}_{n\geq 1}$  has height 0 with respect to  $h_{\mathcal{P}} = h_{\overline{\mathcal{L}_{\mathcal{P}}}}$ , the equidistribution theorem implies that, as  $n \to \infty$ , the Galois orbit of  $x_n$  will be equidistributed on  $\mathbb{P}^1(\mathbb{K}_v)$  with respect to the measure  $c_1(\overline{\mathcal{L}_{\mathcal{P}}})_v$  for any  $v \in M_K$ .

Proof uses Yuan's equidistribution theorem. (Or, as the parameter space is 1-dimensional, so we can also use equidistribution theorem due to Autisser, Thuillier, Chambert-Loir, Baker–Rumely, Favre–Rivera-Letlier ...).

Indeed, suppose that  $\Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$  is infinite.

Let  $\{x_n\}_{n\geq 1}$  be a sequence of distinct points with  $\{x_n\} \subseteq \Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$ . Since  $\{x_n\}_{n\geq 1}$  has height 0 with respect to  $h_{\mathcal{P}} = h_{\overline{\mathcal{L}_{\mathcal{P}}}}$ , the equidistribution theorem implies that, as  $n \to \infty$ , the Galois orbit of  $x_n$  will be equidistributed on  $\mathbb{P}^1(\mathbb{K}_v)$  with respect to the measure  $c_1(\overline{\mathcal{L}_{\mathcal{P}}})_v$  for any  $v \in M_K$ . The same holds for  $h_{\mathcal{Q}} = h_{\overline{\mathcal{L}_{\mathcal{Q}}}}$ , and we obtain  $c_1(\overline{\mathcal{L}_{\mathcal{P}}})_v = c_1(\overline{\mathcal{L}_{\mathcal{Q}}})_v$ .

Proof uses Yuan's equidistribution theorem. (Or, as the parameter space is 1-dimensional, so we can also use equidistribution theorem due to Autisser, Thuillier, Chambert-Loir, Baker–Rumely, Favre–Rivera-Letlier ...).

Indeed, suppose that  $\Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$  is infinite.

Let  $\{x_n\}_{n\geq 1}$  be a sequence of distinct points with  $\{x_n\} \subseteq \Sigma(\mathcal{P}) \cap \Sigma(\mathcal{Q})$ . Since  $\{x_n\}_{n\geq 1}$  has height 0 with respect to  $h_{\mathcal{P}} = h_{\overline{\mathcal{L}_{\mathcal{P}}}}$ , the equidistribution theorem implies that, as  $n \to \infty$ , the Galois orbit of  $x_n$  will be equidistributed on  $\mathbb{P}^1(\mathbb{K}_v)$  with respect to the measure  $c_1(\overline{\mathcal{L}_{\mathcal{P}}})_v$  for any  $v \in M_K$ . The same holds for  $h_{\mathcal{Q}} = h_{\overline{\mathcal{L}_{\mathcal{Q}}}}$ , and we obtain  $c_1(\overline{\mathcal{L}_{\mathcal{P}}})_v = c_1(\overline{\mathcal{L}_{\mathcal{Q}}})_v$ . It follows that  $C_{\mathcal{P}} = C_{\mathcal{P}}$  for all  $v \in M_K$  and  $h_{\mathcal{P}} = h_{\mathcal{P}}$ .

It follows that  $G_{\mathcal{P},v} = G_{\mathcal{Q},v}$  for all  $v \in M_K$ , and  $h_{\mathcal{P}} = h_{\mathcal{Q}}$ . Then  $\Sigma(\mathcal{P}) = \Sigma(\mathcal{Q})$ .

For a family of one-variable dynamics, using the Böttcher coordinate function, one can obtain more presice orbital relation of  $\mathcal{P}$  and  $\mathcal{Q}$ .

For a family of one-variable dynamics, using the Böttcher coordinate function, one can obtain more presice orbital relation of  $\mathcal{P}$  and  $\mathcal{Q}$ . For a family of Hénon maps, the argument based on the Böttcher coordinate function does not seem to be extended. We ask the following question.

For a family of one-variable dynamics, using the Böttcher coordinate function, one can obtain more presice orbital relation of  $\mathcal{P}$  and  $\mathcal{Q}$ . For a family of Hénon maps, the argument based on the Böttcher coordinate function does not seem to be extended. We ask the following question.

#### Question

Suppose that  $h_{\mathcal{P}} = h_{\mathcal{Q}}$ . Then does there exist an automorphism  $\sigma : \mathbb{A}^2 \to \mathbb{A}^2$  over  $\mathbb{A}^1$  and a positive integer  $m \ge 1$  with  $\sigma^{-1} \circ \mathcal{H}^m \circ \sigma = \mathcal{H}^m$  or  $\sigma^{-1} \circ \mathcal{H}^m \circ \sigma = \mathcal{H}^{-m}$  such that  $\mathcal{Q} = \mathcal{H}^n(\sigma(\mathcal{P}))$  for some  $n \ge 1$ ?