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(Joint work with Liang-Chung Hsia)

Shu Kawaguchi

Doshisha Univ.

Intercity Seminar on Arakelov Geometry 2018

University of Copenhagen, September 4, 2018

1 / 40



Plan of the talk

1 Background and motivation (surveyal):

Variation of Néron–Tate heights for families of elliptic curves after

Silverman, Tate, Masser–Zannier, DeMarco–Wang–Ye . . .

2 From elliptic curves to dynamical systems

3 Arithmetic properties of families of Hénon maps:

Definition of a Hénon map, a height on the parameter space, the

set of periodic parameter values, unlikely intersection . . .
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Drawn by Qfract.
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Part 1 Variation of Néron–Tate

heights on elliptic curves

Variation of Néron–Tate heights

(For simplicity, we consider elliptic curves. For the general case of

abelian varieties, see e.g. Call ’89, Green ’89, Holms–de Jong ’15, ’17)

π : E → B is an elliptic surface defined over a number field K,

B is a smooth projective curve

Et := π−1(t) is a smooth elliptic curve

except for finitely many t ∈ B(K).

Define B◦ ⊆ B to be the maximal Zariski open subset over which π is

smooth.

Assume that π has a section O : B → E , which we regard as zero

section.
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Variation of Néron–Tate heights (continued)

E → B: an elliptic surface over a number field K

with zero section O : B → E

K is equipped with absolute values satisfying the product formula.

So is the function field K(B) of B

⇝ We have Néron–Tate heights (η: generic point of B)

• ĥEt : Et(K) → R≥0 on each fiber Et for t ∈ B◦(K)

• ĥEη : Eη(K(B)) → R≥0 on the generic fiber Eη

Let P : B → E be a section.

Set Pt := P(t) for t ∈ B◦(K)

How ĥEt(Pt) and ĥEη(Pη) are related? ((((((((((

6

↓

E

t
t

B

Et

P

t
Pt
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• ĥEt : Et(K) → R≥0 on each fiber Et for t ∈ B◦(K)
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Variation of Néron–Tate heights (continued)

E → B: an elliptic surface

over a number field K

((((((((((

6

↓

E

t
t

B

Et

P

t
Pt

Theorem (Silverman ’83, Tate ’83)

Let P : B → E be a section with ĥEη(Pη) ̸= 0.

Let hB be a height on B(K) associated to a degree 1 divisor. Then

ĥEt(Pt) = ĥEη(Pη)hB(t) +O(
√
hB(t)) for any t ∈ B◦(K).

The error term O(
√
hB(t)) is replaced by O(1) if B = P1.
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Variation of Néron–Tate heights (continued)

Assume B = P1, for simplicity of explanation.

E → P1: an elliptic surface over a number field K with zero section

hstd : P1(K) → R≥0 standard logarithmic Weil height

P : P1 → E a section with ĥEη(Pη) ̸= 0

Results of Silverman and Tate assert that

ĥEt(Pt) = ĥEη(Pη)hstd(t) +O(1) for any t ∈ (P1)◦(K).

We put hP := ĥEt(Pt)/ĥEη(Pη) for t ∈ (P1)◦(K).

Then

hP = hstd +O(1) on (P1)◦(K).

Question What if t ̸∈ (P1)◦(K)? (That is, what if Et is singular?)
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Variation of Néron–Tate heights (continued)

Theorem (DeMarco–Mavraki ’17+ based on Silverman ’92, ’94)

Let E → P1 be an elliptic surface over a number field K with zero

section. Let P : P1 → E be a section with ĥEη(Pη) ̸= 0. Set

hP(t) := ĥEt(Pt)/ĥEη(Pη) for t ∈ (P1)◦(K).

Then hP is the restriction of a semipositive adelically metrized line

bundle LP = (OP1(1), {∥ · ∥v}) on P1 (in the sense of Zhang).

• Theorem says that hP extends “nicely” to t ̸∈ (P1)◦(K) (That is,

for t with singular Et).

• The base curve need not be P1. DeMarco–Mavraki showed that for

any elliptic surface E → B (B a smooth projective curve), hP is the

restriction of a semipositive adelically metrized line bundle on B.
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hP(t) := ĥEt(Pt)/ĥEη(Pη) for t ∈ (P1)◦(K).

Then hP is the restriction of a semipositive adelically metrized line

bundle LP = (OP1(1), {∥ · ∥v}) on P1 (in the sense of Zhang).

• Theorem says that hP extends “nicely” to t ̸∈ (P1)◦(K) (That is,

for t with singular Et).

• The base curve need not be P1. DeMarco–Mavraki showed that for

any elliptic surface E → B (B a smooth projective curve), hP is the

restriction of a semipositive adelically metrized line bundle on B.

8 / 40



Application to unlikely intersection of Masser–Zannier

Let E = {y2z = x(x− z)(x− tz)}
Legendre family of elliptic curves over t ∈ P1.

(At t = 0, 1,∞, Et is singular)

For a ∈ Q \ {0, 1},
consider a section Pa : P1 → E ,

t 7→
(
(a :

√
a(a− 1)(a− t) : 1), t

)
.

Σ(Pa) := {t ∈ Q | Pa(t) is torsion on Et}
= {t ∈ Q | hPa(t) = 0}

((((((((((

6

↓

E

t
t

P1

Et

Pa

t
Pa(t)

Note: Σ(Pa) is an infinite set (Masser–Zannier).

Theorem (Masser–Zannier ’08, ’10, ’12)

Let a, b ∈ Q \ {0, 1}. If there are infinitely many parameter values

t ∈ Q such that both Pa(t) and Pb(t) are torsion points on Et (i.e., if

Σ(Pa) ∩ Σ(Pb) is an infinite set), then a = b.
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Application to unlikely intersection of Masser–Zannier

(continued)

DeMarco–Wang–Ye ’14 give an alternate proof of Masser–Zannier’s

theorem.

• Let E = {y2z = x(x− z)(x− tz)} → P1 be the Legendre family.

• For a ∈ Q \ {0, 1}, the section Pa : P1 → E ,
t 7→

(
(a :

√
a(a− 1)(a− t) : 1), t

)
has ĥEη(Paη) ̸= 0.

• Σ(Pa) := {t | Pa(t) torsion on Et} = {t | hPa(t) = 0}.
• Since hPa = hLPa

with semipositive adelically metrized line bundle

LPa , one can use the equidistribution theorem (such as Yuan. In

[DeMarco–Wang–Ye], they use Baker–Rumely ’06.).

• If |Σ(Pa) ∩ Σ(Pb)| = ∞, then equidistribution theorem implies

that c1(LPa)v = c1(LPb
)v for any v ∈ MK .

• Then hLPa
= hLPb

, Σ(Pa) = Σ(Pb), and (with more arguments)

a = b.
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Part 2 From elliptic curves to

dynamical systems

Canonical heights

E is an elliptic curve over a number field K

L = OE([0]), hL is any height function associated to L

[2] : E → E twice multiplication map. Note that [2]∗(L) ∼= L⊗4.

Néron–Tate height ĥE : E(K) → R≥0 is defined by

ĥE(P ) = lim
n→∞

1

4n
hL([2]

nP )

In place of (E, [2],OE([0])), this construction of a height is generalized

to the case (X, f, L)

(continued . . .)
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Néron–Tate height ĥE : E(K) → R≥0 is defined by
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Canonical heights (continued)

X is a projective variety over a number field K

L is an ample line bundle over X

hL is any height function associated to L

f : X → X a morphism

Assume that f∗(L) ∼= L⊗d for some d > 1

Such a triple (X, f, L) is called a polarized dynamical system

Canonical height ĥf : X(K) → R≥0 is defined by

ĥf (P ) = lim
n→∞

1

dn
hL(f

nP )

(Call–Silverman ’93, Zhang ’95)

Néron–Tate height is when (X, f, L) = (E, [2],OE([0])).
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Torsion points, preperiodic points

f : X → X a morphism over a field K

A point P ∈ X(K) is periodic if fn(P ) = P for some n ≥ 1

P ∈ X(K) is preperiodic if fm(P ) is periodic for some m ≥ 1#

"

 

!

t t t
t

t
- -

HHHHj
�����

6preperiodic

periodic

For an elliptic curve E, it is easy to see that a point P ∈ E(K) is

torsion if and only if P is preperiodic under [2].
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Torsion points, preperiodic points (continued)

For an elliptic curve E over a number field K

{torsion point} = {preperiodic point under [2]}
= {P ∈ E(K) | ĥE(P ) = 0}

⇓

In a polarized dynamical system (X, f, L), in place of torsion points,

we consider

{preperiodic point under f} = {P ∈ X(K) | ĥf (P ) = 0}

(The equality follows from Northcott’s finiteness theorem.)
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Families (continued)

((((((((((

6

↓

E◦

B◦ (parameter space)

Et

P

t
Pt ((((((((((

6

↓

X ◦

B◦ (parameter space)

⟲ ft ⟲ f

P

t
Pt

elliptic surface polarized dynamical system

torsion point preperiodic point

Σ(P) = {t | Pt is Σ(P) = {t | Pt is

torsion on Et} preperiodic under ft}
Néron–Tate height canonical height
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Families (continued)

Baker–DeMarco obtained the the first result in a dynamical setting.

P1 × A1 → A1, ((z0 : z1), t) 7→ t

f : P1 × A1 → P1 × A1, ((z0 : z1), t) 7→ ((z20 + tz21 : z21), t)

a constant section a : A1 → P1 × A1, t 7→ ((a : 1), t)

Σ(a) := {t ∈ A1 | (a : 1) is preperiodic under ft}

6

↓

(z0 : z1) ∈ P1

P1 × A1

ft(z0 : z1) = (z20 + tz21 : z21)

A1 (parameter space)

⟲ ft ⟲ f

t t a

t
a
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Families (continued)

ft(z0 : z1) = (z20 + tz21 : z21)

Σ(a) = {t ∈ A1(C)
| (a : 1) is preperiodic under ft}

Note: Σ(a) is an infinite set.

6

↓

P1

A1 (parameter space)

⟲ ft ⟲ f

t t a

t
(a : 1)

Theorem (Baker–DeMarco ’11)

Let ft(z) = z2 + t. Let a, b ∈ C. Suppose that there exist infinitely many

t ∈ C such that a and b are both preperiodic under ft. Then a2 = b2.

• This answered a question of Zannier. The assumption says that

#(Σ(a) ∩ Σ(b)) = ∞. Using equidistribution theorem, they show

Σ(a) = Σ(b). Properties of the Bötthcher coordinate then imply

a2 = b2.
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More comments on Baker–DeMarco’s theorem

• Further generalizations (in relation to the dynamical Pink–Zilber

conjecture) have been obtained by Baker–DeMarco,

Ghioca–Hsia–Tucker, Favre–Gauthier, DeMarco–Wang–Ye . . .

• Families of rational maps of P1 have been mostly studied. Our

talk is about families of higher-dimensional maps.
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Plan of the talk

1 Background and motivation (surveyal):

Variation of Néron–Tate heights for families of elliptic curves after

Silverman, Tate, Masser–Zannier, DeMarco–Wang–Ye . . .

2 From elliptic curves to dynamical systems

3 Arithmetic properties of families of Hénon maps:

Definition of a Hénon map, a height on the parameter space, the

set of periodic parameter values, unlikely intersection . . .
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Part 3 Arithmetic properties of

families of Hénon maps

Hénon maps

A2: affine plane

A Hénon map over a field K is an automorphism of the form

H : A2 → A2, H (x, y) = (δy + f(x), x)

for some δ ∈ K \ {0} and f(x) ∈ K[x] with d := deg(f) ≥ 2.

The inverse is given by

H−1 : A2 → A2, H−1 (x, y) =

(
y,

1

δ
(x− f(y))

)
Note: H extends to a birational map H : P2 99K P2, but not an

isomorphism.
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Hénon maps (continued)

Some remarks on Hénon maps

• Hénon ’76 showed that a Hénon map has a strange attractor.

• If δ in H(x, y) = (δy + f(x), x) is very small (nearly 0), then the

map looks like

(x, y) 7→ (f(x), x) 7→ (f2(x), f(x)) 7→ . . .

So, Hénon maps are more complicated than one-variable

polynomial maps.

• Friedland–Milnor ’89 showed that any automorphism F : A2 → A2

over C is, up to conjugacy of Aut(C2), either triangularizable or

the composition of Hénon maps. (Dynamically, triangularizable

maps are not interesting.) So, the class of Hénon maps consists of

a fundamental class of plane automorphisms.
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Hénon maps (continued)

• Hénon maps over C are deeply studied in Bedford–Smilie ’91,

Fornæss–Sibony ’92, Hubbard –Oberste-Vorth ’94 among from the

vast literature.

• Arithmetic properties of Hénon maps are also studied. To my best

knowledge, they are first studied by Silverman ’94.

• For a Hénon map H(x, y) = (y, δx+ f(x)), up to conjugacy of

Aut(K), we may assume that f(x) is monic.
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Hénon maps (continued)
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Canonical heights for Hénon maps

Hénon maps are not polarized dynamical systems,

but one can define canonical heights for Hénon maps

• Ω: an algebraically closed field complete with respect to an

absolute value | · |
• ∥(a1, . . . , an)∥ := maxi{|ai|}
• log+(r) := logmax{r, 1} for r ∈ R
• H : A2 → A2 a Hénon map over Ω, P ∈ A2(Ω)

Definition (Green functions on A2(Ω))

G+
H(P ) := lim

n→+∞

1

dn
log+ ∥Hn(P )∥, G−

H(P ) := lim
n→+∞

1

dn
log+ ∥H−n(P )∥

GH(P ) := max{G+
H(P ), G−

H(P )}
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Canonical heights for Hénon maps (continued)

H : A2 → A2 a Hénon map over a number field K

For each place v ∈ MK with absolute value | · |v,
Kv: completion of K with respect to | · |v
Kv: completion of an algebraic closure of Kv

We have the v-adic Green function

GH,v := max{G+
H,v, G

−
H,v} : A2(Kv) → R≥0

Definition (canonical height)

h̃H : A2(K) → R≥0, h̃H(P ) :=
∑

v∈MK

nvGH,v(P )

Here nv is the usual normalizing constant.

For example, if p | v, then nv = [Kv : Qp]/[K : Q].
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Canonical heights for Hénon maps (continued)

H : A2 → A2: a Hénon map of degree d ≥ 2 over a number field K.

⇝ We have defined

• GH,v : A2(Kv) → R≥0 (v-adic Green function)

GH,v(P ) := max
{
lim 1

dn log+ ∥Hn(P )∥, lim 1
dn log+ ∥H−n(P )∥

}
• When Kv = C, the Green function is extremely useful in Bedford–

Smilie ’91, Farnæss–Sibony ’92, Hubbard–Oberste-Vorth ’94.

• h̃H : A2(K) → R≥0 (canonical height), h̃H(P ) :=
∑

v∈MK
nvGH,v

Theorem (K– ’06, ’13)

1 The limits defining GH,v exist for all v ∈ MK .

2 h̃H = hstd +O(1) on A2(K)

3 {periodic point under H} = {P ∈ A2(K) | h̃H(P ) = 0}

Note: Hénon maps are automorphisms, so preperiodic = periodic.
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Families (our setting)

K a number field, δ ∈ K \ {0},
ft(x) ∈ K[t, x] monic in x, degree d ≥ 2 in x

A2 × A1 → A1, ((x, y), t) 7→ t

H : A2 × A1 → A2 × A1, ((x, y), t) 7→ ((δy + ft(x), x), t)

a section P : A1 → A2 × A1, t 7→ ((a(t), b(t)), t)

Σ(P) := {t ∈ A1(K) | Pt = (a(t), b(t)) is periodic under Ht}

((((((((((

6

↓

(x, y) ∈ A2

t ∈ A1 (parameter space)

⟲ Ht ⟲ H

P

t
Pt
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Families (continued)

K: a number field
((((((((((

6

↓

A2

t ∈ A1 (parameter space)

⟲ Ht ⟲ H

P

t
Pt

⇝ We have canonical heights (η: generic point of A1)

• h̃Ht : A2(K) → R≥0 for each t ∈ A1(K)

• h̃Hη : A2(K)(K(t)) → R≥0 on the generic fiber A2
η

Let P : A1 → A2 × A1 be a section with h̃Hη(Pη) ̸= 0. Set

hP(t) := h̃Ht(Pt)/h̃Hη(Pη).

Question 1 Is hP : A1(K) → R a “nice” height function?
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Families (continued)

K: a number field

h̃Hη(Pη) ̸= 0 ((((((((((

6

↓

A2

t ∈ A1 (parameter space)

⟲ Ht ⟲ H

P

t
Pt

Theorem (Hsia–K)

hP is the restriction of the height function associated to a semipositive

adelically metrized line bundle (OP1(1), {∥ · ∥v}) on P1 (in the sense of

Zhang).

Remark

Ingram ’14 showed a Silverman–Tate type estimate

h̃Ht = h̃Hη(Pη)hstd +O(1) on A1(K). (His result is more general, and

the base curve need not be P1.)
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Families (continued)

K: a number field

h̃Hη(Pη) ̸= 0

v ∈ MK

((((((((((

6

↓

A2

t ∈ A1 (parameter space)

⟲ Ht ⟲ H

P

t
Pt

GP,v : A1(Kv) → R≥0, GP,v(t) := GHt,v(Pt)

KP,v := {t ∈ A1(Kv) | {Hn(Pt)}n∈Z is bounded}

WP,v := {t ∈ A1(Kv) | lim
n→+∞

∥(Hn(Pt),H
−n(Pt))∥ = +∞}

Proposition (Hsia–K)

1 hP = c
∑

v∈MK
nvGP,v with c := h̃Hη(Pη) ∈ Q>0.

2 KP,v = {t ∈ A1(Kv) | GP,v(t) = 0}

3 A1(Kv) = KP,v ⨿WP,v
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Example

H = (Ht)t : A2 → A2, (x, y) 7→ (y + x2 + t, x)

(family of quadratic Hénon maps parametrized by t)

P(0,0) : A1 → A2 × A1, t 7→ ((0, 0), t) a constant family of initial points

K(0,0),C := {t ∈ C | {Hn
t ((0, 0))}n∈Z is bounded}

Figure: |Re(t)| ≤ 0.1, |Im(t)| ≤ 0.1
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The set Σ(P) of periodic parameter values

K: a number field

h̃Hη(Pη) ̸= 0
((((((((((

6

↓

A2

t ∈ A1 (parameter space)

⟲ Ht ⟲ H

P

t
Pt

Σ(P) := {t ∈ A1(K) | Pt is periodic under Ht}

Here, we have a phenomenon that was not observed in families of

one-dimensional dynamics.

Σ(P) may not be an infinite set.
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Result on infiniteness of Σ(P)

K a field (of any characteristic)

H(x, y) = (δy + ft(x), x)

Σ(P) = {t ∈ A1(K)

| Pt is periodic under Ht}

((((((((((

6

↓

A2

t ∈ A1 (parameter space)

⟲ Ht ⟲ H

P

t
Pt

Inspired by Dujardin–Favre’s result on the dynamical Mordell–Lang

conjecture for plane automorphisms, we consider a reversible Hénon

map. Thus we assume that δ = ±1 and that, if δ = 1, then ft(x) is an

even polynomial in x. Then, via the involution ι : (x, y) 7→ (−δy,−δx),

we have

ι ◦ H ◦ ι = H−1.

Further ι has the fixed curve C = {x+ δy = 0} in A2.
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Result on infiniteness of Σ(P) (continued)

K a field (of any characteristic)

H(x, y) = (δy + ft(x), x)

Σ(P) = {t ∈ A1(K)

| Pt is periodic under Ht}

((((((((((

6

↓

A2

t ∈ A1 (parameter space)

⟲ Ht ⟲ H

P

t
Pt

Theorem (Hsia–K)

We assume that δ = ±1 and that, if δ = 1, then ft(x) is an even

polynomial in x. If the family of initial points P = (a(t), b(t)) lie on the

fixed curve of the involution ι : (x, y) 7→ (−δy,−δx), i.e.,

a(t) + δb(t) = 0, then Σ(P) is an infinite set.

Example

Let H(x, y) = (y + x2 + t, x). Then, for any a ∈ K, |Σ((a,−a))| = ∞.
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Result on finiteness/emptyness of Σ(P)

As a complimentary result, we point out that Σ(P) can be the empty

set.

Proposition (Hsia–K)

We consider the family of quadratic Hénon maps over C

H(x, y) = (y + x2 + t, x).

Let b ∈ C, and assume that b ̸∈ Z. Then

Σ((0, b)) := {t ∈ A1(K) | (0, b) is periodic under Ht} = ∅.

Example

We have Σ((0, 1/2)) = ∅, while |Σ((a,−a))| = ∞ for any a ∈ C.
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P = (0, 0) near t = 0. (Right) enlarged 103 times. |Σ(P)| = ∞

P = (0, 1/2) near t = −0.1. (Right) enlarged 103 times. Σ(P) = ∅
36 / 40



Unlikely intersection

K: a number field

Σ(P) = {t ∈ A1(K)

| Pt is periodic under Ht}

We have instances

that Σ(P) is infinite.

((((((((((

6

↓

A2

t ∈ A1 (parameter space)

⟲ Ht ⟲ H

P

t
Pt

Let Q : A1 → A2 × A1 be another section with h̃Hη(Qη) ̸= 0.

We would like to consider when there are infinitely many parameter

values t such that both Pt and Qt are periodic under Ht.

Recall that we have shown

• hP(t) := h̃Ht(Pt)/h̃Hη(Pη) is the restriction of the semipositive

adelically metrized line bundle LP := (OP1(1), {∥ · ∥}v).
• Σ(P ) = {t ∈ A1(K) | hP(t) = 0}.
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• hP(t) := h̃Ht(Pt)/h̃Hη(Pη) is the restriction of the semipositive

adelically metrized line bundle LP := (OP1(1), {∥ · ∥}v).
• Σ(P ) = {t ∈ A1(K) | hP(t) = 0}.
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Unlikely intersection (continued)

hP : A1(K) → R≥0 defined by hP(t) := h̃Ht(Pt)/h̃Hη(Pη)

We have hP = c
∑

v∈MK
nvGP,v with c = 1/h̃Hη(Pη) > 0

Σ(P) := {t ∈ A1(K) | Pt is periodic under Ht}
= {t ∈ A1(K) | hP(t) = 0}

Theorem (Hsia–K)

Assume that Σ(P) and Σ(Q) are infinite.

Then the following are equivalent.

1 Σ(P)∩Σ(Q) is infinite. Namely, there are infinitely many periodic

values t such that Pt and Qt are both periodic under Ht.

2 Σ(P) = Σ(Q)

3 GP,v = GQ,v for all v ∈ MK .

4 hP = hQ.
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Unlikely intersection (continued)

Proof uses Yuan’s equidistribution theorem. (Or, as the parameter

space is 1-dimensional, so we can also use equidistribution theorem due

to Autisser, Thuillier, Chambert-Loir, Baker–Rumely,

Favre–Rivera-Letlier . . .).

Indeed, suppose that Σ(P) ∩ Σ(Q) is infinite.

Let {xn}n≥1 be a sequence of distinct points with {xn} ⊆ Σ(P)∩Σ(Q).

Since {xn}n≥1 has height 0 with respect to hP = hLP
, the

equidistribution theorem implies that, as n → ∞, the Galois orbit of

xn will be equidistributed on P1(Kv) with respect to the measure

c1(LP)v for any v ∈ MK .

The same holds for hQ = hLQ
, and we obtain c1(LP)v = c1(LQ)v.

It follows that GP,v = GQ,v for all v ∈ MK , and hP = hQ. Then

Σ(P) = Σ(Q).
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Unlikely intersection (continued)

For a family of one-variable dynamics, using the Böttcher coordinate

function, one can obtain more presice orbital relation of P and Q.

For a family of Hénon maps, the argument based on the Böttcher

coordinate function does not seem to be extended. We ask the

following question.

Question

Suppose that hP = hQ. Then does there exist an automorphism

σ : A2 → A2 over A1 and a positive integer m ≥ 1 with

σ−1 ◦ Hm ◦ σ = Hm or σ−1 ◦ Hm ◦ σ = H−m such that Q = Hn(σ(P))

for some n ≥ 1?
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For a family of Hénon maps, the argument based on the Böttcher
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